

Clifton Scannell Emerson Associates

Engineering Planning Report - Drainage & Water Services

CRUISERATH 220 kV SUBSTATION & TRANSMISSION LINE

Client: ADSIL

Date: 19th November 2019

Environmental Project

Management

Engineering

Health

and Safety

Job Number: 17_014

CONSULTING ENGINEERS

Civil

Engineering

Structural

Engineering

Transport

Engineering

Clifton Scannell Emerson Associates Limited, Consulting Engineers, Seafort Lodge, Castledawson Avenue, Blackrock, Co. Dublin, Ireland. T. +353 1 2885006 F. +353 1 2833466 E. info@csea.ie W. www.csea.ie

Document Control Sheet

Project Name: Project Number:	CRUISERATH 220 kV SUBSTATION & TRANSMISSION LINE 17_014
Report Title:	Engineering Planning Report - Drainage & Water Services
Filename:	RPT-17_014-006

Issue No.	Issue Status	Date	Prepared by	Checked by
1.2	For Planning	19/11/2019	CD	HF

Table of Contents

1	Introd	uction	
	1.1	Overview	
	1.2	Existing Land Use	
	1.3	Permitted Devlopment on Landholding	
	1.4	Permitted Infrastructure on Landholding	
2	Surfac	ce Water Drainage	5
3	Foul V	Vater Drainage	6
4	Water	Supply	
	4.1	Potable Water Supply	
	4.2	Fire Flow Requirements	
5	Flood	Risk Assessment	9
App	endix /	A – Project G Engineering Planning Report Drainage and Water Services	
App	endix l	B – Permitted Site Drawings	
App	endix	C – Irish Water CoF and PCE	

1 Introduction

1.1 Overview

The following report is being submitted as part of the Strategic Infrastructure Development (SID) Application for the proposed development that comprises of a 220kV Gas Insulated Switchgear (GIS) Substation, 4 Transformers, an underground double circuit 220kV cable installation, an underground 49kVA cable installation, and 2 cable bays.

The proposed 220kV cable installation will provide a connection from the existing ESBN Corduff 220kV Substation to the proposed Cruiserath GIS 220kV Substation.

The proposed 49kVA cable installation will provide a connection from an existing unit substation at the Tyrellstown Cross roundabout to the proposed Cruiserath GIS 220kV Substation.

1.2 Existing Land Use

The existing site is currently a greenfield site which was previously used as agricultural land.

1.3 Permitted Devlopment on Landholding

The substation site is located on lands in Cruiserath, Blanchardstown, Dublin 15 adjacent to the R121 Regional Road. The lands in question have been subject to two planning applications which are outlined below

- Development permitted under An Bord Pleanala Reg Ref. PL06F.248544F / Fingal County Council Reg. Ref. FW17A/0025 which consists of for the development of data storage facilities containing data halls and associated electrical and AHU rooms, an electrical transformer/substation compound area with a 220Kv permanent Gas Insulated Switchgear (GIS) substation, 4 no. transformer bays and a permanent control building and other ancillary services.
- Development permitted under Fingal County Council Reg. Ref. FW19A/0087 which consists of two data storage facilities with office space, associated electrical and AHU rooms and other ancillary services.

1.4 Permitted Infrastructure on Landholding

The infrastructure permitted under Reg Ref: PL06F.248544 / Fingal County Council Reg Ref FW 17A/0025 includes connections to external Irish Water water supply main and foul sewer, Fingal County Council surface water drainage network (all in R121 Regional Road), site entrance, gate house and site wide security fencing and gate in addition to infrastructure associated with the permitted data storage facility.

The services for the proposed development connect to the infrastructure described above which have been designed to facilitate the proposed development.

The Engineering and Water Services Report (Document No. RPT-16_177-001) submitted in support of this planning application is included in Appendix A to this report.

2 Surface Water Drainage

The proposed development will connect to surface water pipe network permitted under Reg Ref: PL06F.248544 / Fingal County Council Reg Ref FW 17A/0025. This pipe network discharges to a permitted attenuation basin to the east of the site which has been designed to facilitate the proposed development.

The catchment area for the proposed attenuation basin is indicated on Drawing No. Proj_G-CSE-00-ZZ-DR-C-4110 – Overall Proposed and Existing Surface Water Drainage Layout included in Appendix B.

Proposed post-development discharge from the permitted development is outlined in Section 3.4 of RPT-16-177-001 Project G Engineering and Water Services Report included in Appendix A.

The proposed Surface Water Drainage Network is indicated on Drawing No. Proj_G -CSE-00-DR-C-2220 – Proposed Site Layout and Services.

3 Foul Water Drainage

The proposed development will connect to a foul water pumping station permitted under Reg Ref: PL06F.248544 / Fingal County Council Reg Ref FW 17A/0025. This pumping station outfalls to the permitted gravity pipe network which in turns outfalls to the 375mms Irish Water foul sewer in the R121 to the south east of the site.

Refer to Drawing No. Proj_G-CSE-00-ZZ-DR-C-4210 – Overall Proposed and Existing Surface Water Drainage Layout included in Appendix B which indicates permitted foul water network.

A pre-connection enquiry (PCE) form was submitted to Irish Water on 21st November 2016 which addressed water and wastewater demand for the development of the masterplan for the entire 26 ha landholding on a multi-phase basis. Irish Water provided a confirmation of feasibility (CoF) for the development on 14th February 2017 (IW Reference Number: CUST16622) included in Appendix C.

The estimated Dry Weather Flow (DWF) for the entire 26 ha landholding was initially 6,240 litres per day. This was revised upwards for the development permitted under Fingal County Council Reg. Ref. FW19A/0087 by 2,760 litres per day to 9,000 litres per day. Mr. Dermot Phelan confirmed that a revised PCE would not be required for this increase (see Fig 1 below).

From: Dermot Phelan <dphelan@water.ie> Sent: Thursday 25 April 2019 17:31 To: 'Rife, Shane' Cc: Corn Doherty; Murphy, Cormac; Brennan, Eugene Subject: BE: DUB58 Pre Connection Inquiry</dphelan@water.ie>					
Shane, A revised PCE would not be requincluded in the connection appli	uired in this instance for the additional 2,760l/d. The revised information should be ication.				
Regards Dermot					
Dermot Phelan Major Connections Project Lead Connections and Developer Service Irish Water Colvill House 24-26 Talbot Street T: 01 8925466 E: <u>dphelan@water.i</u> ♣ Please consider the environment	es- Greater Dublin Region Dublin 1 <u>e</u> nt before printing this e-mail				

Fig 1 – Correspondence from Dermot Phelan of Irish Water

The proposed foul water flows from the development are outlined in Table 1 below:-

Appliance	Flow per use (litres)	Average use per week	Weekly Flow (litres)	Average Daily Flow (litres)
WC	6	1	6	0.85
WHB	1	1	1	0.15
Total			7	1

Table 1 – Average Foul Water Daily Demand

As can be seen in Table 1 the average daily foul water demand of 1 litre per day represents a negligible volume in terms of the volume permitted by IW for the entire landholding.

Project Number: 17_014 Project: Cruiserath 220kV Substation Title: Engineering Planning Report - Drainage & Water Services

Due to the severe consequences of a spillage entering the surface water system it is proposed to connect the discharge from the electrical substation transformer bunds to the foul system. This drainage is to pass through a Class 1 Full Retention Oil Separator.

The proposed Foul Water Drainage Network is indicated on Drawing No. Proj_G-CSE-00-DR-C-2220 – Proposed Site Layout and Services.

4 Water Supply

4.1 Potable Water Supply

The proposed development will connect to a watermain permitted under Reg Ref: PL06F.248544 / Fingal County Council Reg Ref FW 17A/0025. This watermain is connected to the 500mm Irish Water foul sewer in the R121 to the south east of the site.

Refer to Drawing No. Proj_G-CSE-00-ZZ-DR-C-4310 – Overall Proposed and Existing Watermain Layout included in Appendix B which indicates permitted foul water network.

A pre-connection enquiry (PCE) form was submitted to Irish Water on 21st November 2016 which addressed water and wastewater demand for the development of the masterplan for the entire 26 ha landholding on a multi-phase basis. Irish Water provided a confirmation of feasibility (CoF) for the development on 14th February 2017 (IW Reference Number: CUST16622) included in Appendix D.

The estimated average water demand for the entire 26 ha landholding is 1 litre per second or 450 m³ per day as outlined in the PCE provide in Appendix C.

The proposed water supply demand from the development are outlined in Table 2 below:-

Appliance	Flow per use (litres)	Average use per week	Weekly Flow (litres)	Average Daily Flow (litres)
WC	6	1	6	0.85
WHB	1	1	1	0.15
Total			7	1

 Table 2 – Average Water Daily Demand

As can be seen in Table 1 the average daily foul water demand of 1 litre per day represents a negligible volume in terms of the volume permitted by IW for the entire landholding.

The proposed Water Supply Network is indicated on Drawing No. Proj_G -CSE-00-DR-C-2220 – Proposed Site Layout and Services included in Appendix B.

4.2 Fire Flow Requirements

The proposed development will be served by hydrants connected to the permitted watermain network which are connected to a permitted 400 m³ fire sprinkler tank.

5 Flood Risk Assessment

A site specific Stage 1 Flood Risk Assessment was carried out by AWN Consulting and is a part of EIAR, Chapter 6, Appendix 6.2.

Appendix A – Project G Engineering Planning Report Drainage and Water Services

Associates

Project G

Engineering Planning Report – Drainage & Water

Client: ADSIL

Date: February 2017

Job Number: 16_177

CONSULTING ENGINEERS

Engineering

Structural Engineering

Transport Engineering Environmental Project Engineering

Health Management and Safety

Clifton Scannell Emerson Associates Limited, Consulting Engineers, Seafort Lodge, Castlesdawson Avenue, Blackrock, Co. Dublin, Ireland. T. +353 1 2885006 F. +353 1 2833466 E. info@csea.ie W. www.csea.ie

Document Control Sheet

Project Name:	Project G
Project Number:	16_177
Report Title:	Engineering Planning Report – Drainage & Water
Filename:	RPT-16_177_001 Engineering Planning Report – Drainage & Water

Issue No.	Issue Status	Date	Prepared by	Checked by
1 st	Draft	25/10/16	NM	HF
2 nd	Draft	08/12/16	NM	HF
3 rd	Planning	27/02/17	NM	HF

Title: Engineering Planning Report - Drainage & Water

Table of Contents

Document Control Sheet	2
Table of Contents	3
1.0 Introduction	4
1.1 Site Description	4
1.2 Nature of Proposed Development	4
2.0 Foul Sewerage	5
2.1 Existing infrastructure	5
2.2 Proposed Foul Drainage Network	5
3.0 Surface Water Drainage	6
3.1 Existing infrastructure	6
3.2 Cooling Water Discharge	6
3.3 Proposed Surface Drainage Network	6
3.4 Proposed Flow Control	8
3.5 Proposed Attenuation Basins	8
4.0 Potable Water Supply	10
4.1 Existing Infrastructure	10
4.2 Proposed Water Supply	10
Appendix A	11
Appendix B	12
Appendix C	13
Appendix D	14
Appendix E	15
Appendix F	16
Appendix G	17
Appendix H	18
Appendix I	19
Appendix J	20

1.0 Introduction

The following report is being submitted as part of the planning application for ADSIL for the proposed Project G Campus in North County Dublin. The report outlines the proposals for drainage services and potable water for the development. Note that this report should be read in conjunction with CSEA Drawings 16_177_4110 "Proposed Surface Water Layout", 16_156_4210 "Proposed Foul Sewer Layout" and 16_156_4310 "Proposed Water Main Layout".

1.1 Site Description

The site is located to the north of Blanchardstown within County Dublin along the R121. The site is approximately 26Ha in size and is relatively flat. The site is approximately 85.5m in elevation with the topographical survey indicating that the land falls from south to north. The southern and western boundaries of the site are formed by the R121. While the Carlton Hotel and the Bristol Myers Squibb facility are located to the north and west of the site respectively. Site investigations identified rock at a reasonable high level varying between 0.7m and 2.0m below ground level. The water table was encountered at between 1.3m and 3.2m below ground level. Examination of the Geological Survey of Ireland's mapping indicates that the under lying aquifer is categorised as locally important and of high vulnerability.

1.2 Nature of Proposed Development

The development will consist of the following elements:

- A data storage facility, containing data halls and associated electrical and AHU rooms.
- 2No. emergency generator enclosures.
- An electrical transformer/substation compound area with a 220Kv permanent Gas Insulated Switchgear (GIS) substation, 4 no. transformer bays and a permanent control building.
- A bunded fuel storage tank and delivery point, 2No. humidifier tanks and water sprinkler tank and pump room
- 2No. surface water attenuation basins, one in the west of the site and one in the south of the site.
- 2No. new entrances off the R121 and all associated internal circulation routes and footpaths.

Title: Engineering Planning Report - Drainage & Water

2.0 Foul Sewerage

2.1 Existing infrastructure

There is an existing 375mm diameter connection to the IDA foul water system under the R121 in the south eastern corner of the site. See **Appendix I** for details of the connection agreement. The invert level of this pipe is 80.185m. It should be noted that from examination of record drawings this pipe's gradient is approximately 1 in 365. See CSEA Drawing 16_177_4200 for details.

2.2 Proposed Foul Drainage Network

The estimated daily discharge for the development has been calculated in accordance with Table 3 of the EPA's "Wastewater Treatment Manuals: Treatment Systems for Small Communities, Business, Leisure Centres and Hotels" as per Section 5.2.3 of Volume 2 of the GDSDS. Assuming a maximum daily occupancy of 18Nr staff and 8Nr security and a per capita wastewater flow of 30l/day for industrial developments without canteen facilities, the daily Dry Weather Flow (DWF) associated with the first phase of the development is 780l/day. The estimated DWF flow for the completed future development is 6,240l/day.

Due to the topography of the site it will not be possible to cater for all the foul discharge by means of gravity sewers alone. It is proposed to discharge the foul from each of the buildings to foul pumping manholes with 24 hours of storage volume. The foul will be pumped from these manholes to a gravity trunk line along the eastern boundary that will discharge to the IDA's foul system.

The network has been designed to ensure that the foul discharge maintains a self-cleansing velocity. The proposed network adheres to the minimum pipe gradients set out in Table 6 of the "Building Regulations Technical Guidance Document H". It is proposed to take all foul drainage from the buildings to the pumping manholes by means of 100mm pipes with minimum gradients of 1:60 and 150mm pipes with minimum gradients of 1:150. The trunk line along the eastern boundary sewers will consist of 150mm pipes with minimum gradients of 1:150. From Diagram 6 of the "Building Regulations Technical Guidance Document H" the capacity of a 150mm diameter pipe when flowing at 0.75 proportional depth is approximately 18.0l/s.

It should be noted that as there are no areas for food preparation within the buildings there is no requirement for grease traps to prevent excessive amounts of grease entering the foul system.

It is not proposed to discharge any trade effluent from the facility to the IDA's foul sewer.

Due to the severe consequences of a spillage entering the surface water system it is proposed to connect the discharge from the electrical substation transformer bunds to the foul system. This drainage is to pass through a Class 2 Full Retention Oil Separator. The total area of the 4Nr proposed bunds is 600m². A CNS15s/11 separator or similar will provide the required treatment capacity for this area. Similarly a CNS04s/11 separator or similar will be provided at the diesel storage bund. See **Appendix A** for details of the proposed units.

Title: Engineering Planning Report - Drainage & Water

3.0 Surface Water Drainage

The proposed development will provide attenuation in compliance with the requirements of the Greater Dublin Strategic Drainage Study (GDSDS) The following section outlines the surface water drainage proposals for the development. All SUDS elements have been designed as per the recommendation of the SuDS Manual 2015.

All surface water works including connections will be carried out in accordance with the Code of Practice for Development Works – Drainage.

3.1 Existing infrastructure

There is an existing 900mm diameter connection to the IDA surface water system under the R121 in the south eastern corner of the site. See **Appendix I** for details of the connection agreement. The invert level of this pipe is 78.632m. See CSEA Drawing 16_177_4100 for details.

3.2 Cooling Water Discharge

It should be noted that the residual cooling water from the air handling units is to be discharged to the surface water.

The peak rate of demand for Phase 1 is 79,000l/day, see **Appendix J** for details. This results in a demand of 0.914l/s. Allowing for a 10% margin this increases to 1.0l/s which results in a peak daily demand of 86.40m³. Of the water supplied only 40% will be discharged to the surface water system as the remainder will be lost to evaporation in the cooling process. This results in a peak discharge of 34.56m³/day. The average rate of demand for Phase 1 during typical climatic conditions is one eighth of that required for peak cooling resulting in a daily demand of 10.80m³. As with the peak discharge only 40% of the water supplied will be discharged to the surface water system due to evaporation losses. This results in an average discharge of 4.32m³/day.

See the table 3.1 below for the expected average and peak daily potable water demand for each phase of the development:

		Expected Cooling Water Discharge			
Project Phasing Estimated Year Complete		Average Daily Discharge (m ³)	Peak Daily Discharge (m³)		
Phase 1	2017	4.32	34.56		
Phase 2	2018	8.64	51.84		
Phase 3	2019	12.96	76.03		
Phase 4	2020	17.28	96.77		
Phase 5	2021	21.60	117.50		
Phase 6	2022	25.92	138.24		
Phase 7	2023	30.24	172.80		
Phase 8	2024	34.56	207.36		

It should be noted that the cooling water will only be required during periods of hot dry weather and therefore the discharge to the surface water network will not coincide with any rainfall events.

3.3 Proposed Surface Drainage Network

The surface water network has been designed to provide sufficient capacity to convey all surface water runoff associated with the 1 in 100 year event to the attenuation basins without any overland flooding. This is in compliance with Criterion 3 of Table 6.3 of Volume 2 the GDSDS. There are to be 2No. drainage networks for the first phase of the development. A larger one with an offline attenuation

Title: Engineering Planning Report – Drainage & Water

basin in the south to serve the data storage facility and a smaller one with an offline attenuation basin in the west to serve electrical substation and security building. To reduce the extent of the earthworks required to create the southern basin the dock leveller for the data storage facility is to be drained via pumping to the gravity system. Details of the proposed attenuation basin are provided below.

All calculations have allowed for an additional allowance of 10% in rainfall intensities to allow for climate change as per Table 6.1 of Volume 2 of the GDSDS.

It should be noted that the surface water network has been sized to allow for the future development of the site. See CSEA Drawing 16_177_4110 for details of the area which the proposed networks and attenuation systems have been designed to serve. See **Appendix B & C** for details of the Windes surface water network.

Analysis of the Windes results for the data storage facility's drainage network identified the 30 minute, 120 minute summer storms and 360 minute winter storms as the critical storms governing the various pipe sizes. Similarly the Windes results indicate that the 30 minute summer storm and the 180 minute winter storm are the critical storms for the substation and security building's' drainage network. See **Appendix B & C** for details of the Windes calculations.

As noted in Section 1.1 above the site is relatively flat across its length. Due to this it will not be possible to maintain a minimum longitudinal fall of 0.5% on the proposed roads within the site without extensive earthworks. Consequently it will not be feasible to cater for the site's road drainage by means of road gullies. As a result of this it is proposed to allow the sheet run off arising from the 2.5% cross falls on the roads to discharge directly to a series of roadside swales.

To allow the runoff to flow from the road surface to the swale the kerbs adjacent to the swales will be dropped throughout their length. A 1.5m wide reinforced grass margin will be located between the road the swales to act as a hard shoulder to prevent accidental damage to the grassed areas by vehicles. The edges of the margins have been detailed as 50mm below the adjacent hardstanding to prevent the formation of sediment lips that would impede the flow of water into the swale. Due to the shallow gradients the swales will be constructed as dry swales to avoid prolonged periods of waterlogging. This will provide the added benefit of increased interception and pollutant removal. It should be noted that as the water table in the area of the first phase of the development is between 2.1m and 3.2m below ground level there will be no need to line the swales. The side slopes are to be limited to a slope of 33% to prevent erosion and to facilitate mowing. Details of the proposed swale cross section and kerb details can be found in CSEA Drawings 16_177_4801-4807. In areas where the use of swales is not possible due to limited space it is proposed to use a proprietary combined drain and kerb system.

The swales have been designed as open channels using Manning's formula to ensure optimum runoff filtration during the 1:1 year event and adequate conveyance capacity during the 1:100 year event. The Manning's coefficient has been taken as 0.35 where the water is in contact with the vegetated sides and base of the channel. During the 1:1 year event the depth of the flow is not to exceed 100m so as to prevent frequent flattening of the vegetation. Additionally the flow velocity has been limited to less than 0.3m/s to allow adequate time for filtration to occur. The maximum flow velocity for the 1:100 year event has been limited to less than 1.0m/s to prevent issues with erosion within the channel. See **Appendix D** for details of the swale design calculations. The swales' filter drains will discharge to a number of catch pit manholes located within the swales which will be connected to the main drainage system. The lids of these catch pits will consist of 600mm x 600m gratings set at the level of the 1 in 1 year water level. These grating will double as assess points to the catch pits as well as outlets from the swales when the flows exceed the capacity of the filter drains. CSEA Drawings 16_177_4110 for details.

Prior to passing through the flow control devices the surface water will be passed through Class 1 Bypass Oil Separators. Due to the large site area associated with the data storage facility network it will not be possible to pass all of the discharge associated with an extreme event through a separator. It is therefore proposed to pass the initial runoff from frequent events through a CSB50s/21 separator with larger volumes bypassing the unit via a 1200mm diameter pipe directly to the attenuation basin.

Title: Engineering Planning Report - Drainage & Water

As the area being served by the substation and security building's network is smaller it will be possible to pass all of the resulting discharge through the integral bypass mechanism within a CSB60s/21 separator. See **Appendix F** for details of the proposed units. As noted in Section 2.2 above areas where the consequences of an oil spillage are extremely severe, such as the electrical substation transformer bunds and diesel storage bunds, are to discharge to the foul system rather than the surface water network.

It is proposed to install proprietary "Surfsep" hydrodynamic separators upstream of the proposed flow control devices to reduce the likelihood of blockages occurring. As the unit for the data storage facility's network is to be placed downstream of the inlet/outlet of the off line attenuation storage and upstream of the flow control unit the flow through the device will be limited to that of the hydrobrake. The resulting flow rate will require the use of a CDS0806 model. Similarly to the oil separator the hydrodynamic separator for the substation and security building's network has been sized to allow all of the resulting discharge to pass through its integral bypass mechanism with the resulting flow rate requiring a CDS1012 model. See **Appendix E** for details of the proposed units.

It should be noted that the surface water line along the sites eastern boundary is to cater for discharge from the future attenuation basin as show on CSEA Drawing 16_177_4110. The line is to discharge into the 900mm diameter outfall from the south east corner of the site.

3.4 Proposed Flow Control

It is proposed to limit the surface water discharge from the first phase of the development to the Qbar value in compliance with Criteria 2 & 4 of Table 6.3 of Volume 2 the GDSDS. The area of the site occupied by Phase 1 is 12.3Ha, of which 8.5Ha and 3.8Ha are served by the south and west basin respectively. This results in an allowable discharge of 41.3I/s from the southern basin and 18.5I/s from the western basin. See **Appendix H** for details of the Qbar calculation. It is proposed to use 2No. "Hydrobrake Optimum" vortex flow control device to restrict the flows to these amounts. See **Appendix G** for typical details of the proposed units.

It is proposed to increase the discharge from the site as the area that is developed in the future expands. As the additional phase that is to be served by the southern and western attenuation systems is constructed the hydrobrakes will be replaced with units with larger orifice sizes. The total area to be catered for by the southern attenuation system in future is 9.4Ha with 5.0Ha being served by the western system. See CSEA Drawing 16_177_4100 for details of these areas. This will result in a future allowable discharge rates for the areas of 46l/s and 24/s. See **Appendix H** for details of the Qbar calculation.

It should be noted that at 26.0Ha the allowable discharge for the future fully developed site, including the lands to be served by the separate drainage network, is 126.3l/s. See **Appendix H** for details of the Qbar calculation.

3.5 **Proposed Attenuation Basins**

As noted in section 3.2 above the design has been carried out for the 1 in 100 year event with a 10% allowance for climate change

As noted in Section 3.3 above the attenuation systems have been sized to allow for future development of the area of the site indicated on CSEA Drawing 16_177_4110. The overall site area to be served by the attenuation system in future is 14.4Ha, with 9.4Ha for the southern basin and 5.0Ha for the western basin. The design has been carried out using an allowable discharges of 46l/s and 24l/s respectively. It is proposed to attenuate the remaining portion of the site in a separate attenuation system due to the site's topography.

The southern basin is to provide a 0.265m depth of storage during the 1 in 100 year event. This allows for a 235mm freeboard from the permitted flood level to the lowest point on the road network served by the basin, the level of which is 85.900m, and 0.585m to the lowest finished floor level on the network. This results in a proposed basin invert of 85.400m. Due to the site's topography this will result in a depth of dig at the proposed basin of approximately 1.0-1.5m. Site investigation works

Title: Engineering Planning Report - Drainage & Water

determined that the water table in the vicinity of the basin is at a level of 84.400m. As a result of this the base of the basin will not encroach into the water table. Consequently it will not be necessary to the install an impervious liner as part of the basins construction. The side slopes are to be limited to a slope of 33% to facilitate mowing. CSEA Drawings 16_177_4802, 4803 & 4804 for details of the basin.

The western basin is to provide a 0.415m depth of storage during the 1 in 100 year event. This allows for a 200mm freeboard from the permitted flood level to the lowest point on the road network served by the basin, the level of which is 85.100m, and 0.500m to the finished floor level of the security building. This results in a proposed basin invert of 84.485m. Due to the site's topography this will result in a depth of dig at the proposed basin of approximately 0.1-0.6m. As the proposed top of water level is above the existing ground level in areas it will be necessary to build up the proposed ground level at the banks of the basin. Consequently it will be necessary to the install an impervious liner as part of the basins construction. The side slopes are to be limited to a slope of 33% to facilitate mowing. CSEA Drawing 16_177_4806 for details of the basin.

Due to the site's topography and the length of the proposed networks the inverts of the surface water sewers at the flow control devices will be below the inverts of the basins. As a result of this it will be necessary to surcharge portions of the drainage systems before water enters the basins.

See **Appendix B & C** for details of the attenuation storage and flow control within the Windes drainage network. Analysis of the Windes results identified the 360 minute winter storm as the critical storm governing the size of the southern attenuation basin with 180 minute winter storm being the critical storm for the western basin. The required storage volume for the southern basin is 1745m³ while the western basin is to provide 380m³ of storage. See **Appendix B & C** for details of the Windes calculations.

Title: Engineering Planning Report - Drainage & Water

4.0 Potable Water Supply

4.1 Existing Infrastructure

The site is served by a 500mm diameter ductile iron water main that is located in the south east corner of the site. See CSEA Drawings 16_177_4300 for details.

4.2 Proposed Water Supply

It is proposed to take a 100mm connection from the IDA main in the south east corner of the site. This main is to feed a number of 80mm mains that will serve the proposed data storage facilities and security building with potable water. The 100mm main will also serve a 400m³ sprinkle tank. The sprinkle tank and the associated pump house will serve a number of 250mm fire mains throughout the development.

It should be noted that the air handling units (AHUs) which constitute the primary water demand are to be provided with 24 hours of storage. The storage provided for Phase 1 of the development is to be 79m³. The storage provided for the completed development is to be 450m³. See **Appendix J** for the Irish Water "Pre-Connection Enquire Form" for details of the calculations.

Based on the above storage requirements being refilled over a 24 hour period the proposed peak water demand for the future completed development including all phases is 6l/s. The proposed average water demand during typical climatic conditions is 1l/s. As the water demand will be spread over 24 hours the normal demand is also 1l/s. See the calculation section of **Appendix J** for details.

See the table 4.1 below for the expected average and peak daily potable water demand for each phase of the development:

		Expected Water Usage			
Project Phasing	Estimated Year Complete	Average Daily Usage (m³)	Peak Daily Demand (m ³)		
Phase 1	2017	10.80	86.40		
Phase 2	2018	21.60	129.60		
Phase 3	2019	32.40	190.08		
Phase 4	2020	43.20	241.92		
Phase 5	2021	54.00	293.76		
Phase 6	2022	64.80	345.60		
Phase 7	2023	75.60	432.00		
Phase 8	2024	86.40	518.40		

Project Number: 16_177

Project: Project G

Title: Engineering Planning Report - Drainage & Water

Appendix A

Proposed Full Retention Oil Separator (Or Similar)

The Conder Range of Full Retention Separators

The Conder Range of Full Retention Separators are designed to treat the full flow that can be delivered by a drainage system, which is normally equivalent to the flow generated by a rainfall intensity of 65mm/hr. Full Retention Separators are used where there is a risk of regular contamination with oil and a foreseeable risk of significant spillages.

Typical Application

- Sites with hi-risk of oil contamination
- Fuel storage depots
- · Refuelling facilities
- Petrol forecourts
- Vehicle maintenance areas/workshops
- Where discharge is to a sensitive environment

Features and Benefits

- All surface water is treated
- Automatic closure device (ACD) fitted as standard

Performance

All Conder Full Retention Separators have an automatic closure device (ACD) fitted as standard. This is compulsory for all PPG3 compliant Full Retention Separators and prevents accumulated pollutants flowing through the unit when maximum storage level is reached.

How it Works

Step 1

Contaminated water enters the separator where the liquid is retained for a sufficient period to ensure that the lighter than water pollutants (such as oil, petrol) separate and rise to the surface of the water.

Step 2

The decontaminated water then passes through the coalescing filter before it is safely discharged from the separator, with the remaining pollutants being retained in the separator.

Step 3

Retained pollutants must be emptied from the separator once the level of oil is reached, or the oil level alarm is activated. This waste should be removed from the separator under the terms of The Waste Management Code of Practice.

Specification Larger models available upon request.

Area Drained (m²)	Tank code Incl. Silt	Length including Silt (mm)	Slit Capacity (L)	Oil Storage Capacity	Diameter (mm)	Height (mm)	Base to inlet Invert (mm)	Base to outlet Invert (mm)
222	CNS4s/11	2319	400	40	1026	1655	1295	1245
333	CNS6s/11	3414	600	60	1026	1655	1295	1245
444	CNS8s/11	3197	800	80	1210	1855	1480	1430
556	CNS10s/11	3957	1000	100	1210	1855	1480	1430
833	CNS15s/11	3870	1500	150	1510	2180	1780	1730
1111	CNS20s/11	5060	2000	200	1510	2180	1780	1730
1667	CNS30s/11	5369	3000	300	1880	2560	2030	1980
2222	CNS40s/11	7059	4000	400	1880	2560	2030	1980
2778	CNS50s/11	4080	5000	500	2600	3315	2730	2680
3333	CNS60s/11	4805	6000	600	2600	3315	2730	2680
3889	CNS70s/11	5529	7000	700	2600	3315	2730	2680
4444	CNS80s/11	6254	8000	800	2600	3315	2730	2680
5556	CNS100s/11	6751	10,000	1,000	2600	3315	2730	2680

Note: It is a requirement of PPG3 that you have a silt capacity either in your tank or in an upstream catch pit.

Project Number: 16_177

Project: Project G

Title: Engineering Planning Report - Drainage & Water

Appendix B

Surface Water Windes Network & Results for the Pipe Network's Critical Storms (South Basin)

Clifton Scannell Emerson A	Associ	Lates										Page 1
Seefort Lodge Castledawso	on Ave	enue										
Blackrock												<u> </u>
County Dublin												Micco
Date 22/02/2017 10:17					De	signed	by noelm					
File Attenuation Area A (I	Line 1	4.000 s	2.00	. & 0(Ch	ecked }	эу					Diginaria
Micro Drainage					Ne	twork 2	2016.1.1					
				<u>Exist</u>	ing Ne	twork	Details f	or Sto	orm			
	PN	Length	Fall	Slope	I.Area	T.E.	Base	k	HYD	DIA	Section Type	
		(m)	(m)	(1:X)	(ha)	(mins)	Flow (l/s)	(mm)	SECT	(mm)		
	91 000	70 450	0 353	225 1	0 070	5 00	0 0	0 600	0	225	Pipe/Conduit	
	51.000	19.430	0.555	223.1	0.070	5.00	0.0	0.000	0	223	ripe/conduit	
S	s2.000	68.200	0.227	300.4	0.201	5.00	0.0	0.600	0	300	Pipe/Conduit	
5	52.001	22.250	0.074	300.7	0.000	0.00	0.0	0.600	0	300	Pipe/Conduit	
c	S1 001	79 850	0 213	374 9	0 062	0 00	0 0	0 600	0	375	Pipe/Conduit	
	s1.001	42.600	0.114	373.7	0.069	0.00	0.0	0.600	0	450	Pipe/Conduit	
S	s1.003	74.350	0.165	450.6	0.068	0.00	0.0	0.600	0	450	Pipe/Conduit	
	~~ ~~~	=										
	53.000 93.001	74.000	0.260	284.6	0.393	5.00	0.0	0.600	0	375	Pipe/Conduit	
	S3.001	19.010	0.067	283.7	0.000	0.00	0.0	0.600	0	375	Pipe/Conduit	
	55.002	19.010	0.007	200.7	0.000	0.00	0.0	0.000	0	373	ripe, conduie	
2	S1.004	74.050	0.148	500.3	0.076	0.00	0.0	0.600	0	600	Pipe/Conduit	
S	51.005	14.100	0.028	503.6	0.019	0.00	0.0	0.600	0	600	Pipe/Conduit	
c	\$4.000	83.075	0.286	290.5	0.389	5.00	0.0	0.600	0	375	Pipe/Conduit	
	s4.001	41.015	0.084	488.3	0.253	0.00	0.0	0.600	0	525	Pipe/Conduit	
											-	
S	51.006	43.450	0.087	499.4	0.000	0.00	0.0	0.600	0	750	Pipe/Conduit	
c	\$5.000	40.000	0.249	160.6	0.137	5.00	0.0	0.600	0	225	Pipe/Conduit	
		10.000	0.219	100.0	0.10,	0.00	0.0	0.000	0	220	ripo, condaro	
2	S1.007	70.600	0.141	500.7	0.053	0.00	0.0	0.600	0	750	Pipe/Conduit	
		69 000	0 220	202.2	0 204	5 00	0 0	0 600		275	Ding (Conduit	
	56.000 S6 001	68.900 21 850	0.228	302.2	0.384	0.00	0.0	0.600	0	375	Pipe/Conduit Pipe/Conduit	
	s6.002	19.280	0.064	301.3	0.000	0.00	0.0	0.600	0	375	Pipe/Conduit	
											-	
S	51.008	45.900	0.092	498.9	0.000	0.00	0.0	0.600	0	900	Pipe/Conduit	
	\$7 000	69 000	0 307	224 8	0 082	5 00	0 0	0 600	0	225	Pipe/Conduit	
		09.000	0.007	224.0	0.002	0.00	0.0	0.000	0	220	ripe, conduie	
2	38.000	71.150	0.295	241.2	0.230	5.00	0.0	0.600	0	300	Pipe/Conduit	
			0 005	20E 1	0 200	E 00	0.0	0 600		200	Direc (Conducit	
	59.000	60.500	0.295	205.1	0.209	5.00	0.0	0.600	0	300	Pipe/Conduit	
5	s8.001	11.150	0.027	413.0	0.000	0.00	0.0	0.600	0	450	Pipe/Conduit	
					Notra	ark Par	aulte Tabl					

<u>Network Results Table</u>

PN	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Vel (m/s)	Cap (1/s
S1.000	84.475	0.070	0.0	0.87	34.5
S2.000	84.685	0.201	0.0	0.90	63.7
\$2.001	84.458	0.201	0.0	0.90	63.7
\$1.001	83.972	0.333	0.0	0.93	102.7
S1.002	83.684	0.402	0.0	1.05	166.3
S1.003	83.570	0.470	0.0	0.95	151.3
\$3.000	84.675	0.393	0.0	1.07	118.1
S3.001	84.415	0.393	0.0	1.07	118.5
\$3.002	84.337	0.393	0.0	1.07	118.2
S1.004	83.255	0.939	0.0	1.08	305.9
\$1.005	83.107	0.958	0.0	1.08	304.9
54.000	84.675	0.389	0.0	1.06	116.8
s4.001	84.239	0.642	0.0	1.01	218.0
S1.006	82.929	1.600	0.0	1.25	550.2
\$5.000	84.825	0.137	0.0	1.03	40.9
S1.007	82.842	1.790	0.0	1.24	549.5
S6.000	84.675	0.384	0.0	1.04	114.5
S6.001	84.447	0.384	0.0	1.03	114.3
S6.002	84.375	0.384	0.0	1.04	114.7
S1.008	82.551	2.174	0.0	1.40	888.0
S7.000	84.475	0.082	0.0	0.87	34.5
S8.000	84.685	0.230	0.0	1.01	71.2
\$9.000	84.685	0.209	0.0	1.09	77.3
S8.001	84.240	0.439	0.0	0.99	158.1
	©198	2-2016 >	KP Solutio	ns	

lifton Scannell Emerson Assoc	iates										Page 2
eefort Lodge Castledawson Av	enue										
lackrock											4
ounty Dublin											Micco
ate 22/02/2017 10:17				Des	igned	by noelm					
ile Attenuation Area A (Line	1.000 &	7.00	0 & .	Che	cked k	ру					Digitige
icro Drainage				Net	work 2	2016.1.1					
			<u>Exist</u>	ing Net	twork 1	Details fo	or Sto	rm			
PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	
S7.00	1 69.500	0.139	500.0	0.076	0.00	0.0	0.600	0	525	Pipe/Conduit	
S10.00	0 80.000	0.267	299.6	0.188	5.00	0.0	0.600	0	300	Pipe/Conduit	
S7.00	2 74.500	0.149	500.0	0.074	0.00	0.0	0.600	0	600	Pipe/Conduit	
S11.00	0 71.150	0.294	242.0	0.219	5.00	0.0	0.600	0	300	Pipe/Conduit	
S12.00	0 60.500	0.294	205.8	0.191	5.00	0.0	0.600	0	300	Pipe/Conduit	
S11.00	1 11.150	0.043	259.3	0.000	0.00	0.0	0.600	0	375	Pipe/Conduit	
S7.00	3 70.740	0.141	501.7	0.429	0.00	0.0	0.600	0	750	Pipe/Conduit	
S13.00	0 65.000	0.132	492.4	0.611	5.00	0.0	0.600	0	525	Pipe/Conduit	
\$13.00	1 61.815	0.126	490.6	0.053	0.00	0.0	0.600	0	525	Pipe/Conduit	
S13.00	2 53.510	0.109	490.9	0.039	0.00	0.0	0.600	0	525	Pipe/Conduit	
s7.00	4 76.250	0.153	498.4	0.087	0.00	0.0	0.600	0	900	Pipe/Conduit	
\$14.00	0 73 900	0 265	278 9	0 300	5 00	0 0	0 600	0	375	Pine/Conduit	
S14.00	1 6.450	0.017	379.4	0.000	0.00	0.0	0.600	0	450	Pipe/Conduit	
										-	
\$7.00	5 40.900	0.081	504.9	0.043	0.00	0.0	0.600	0	900	Pipe/Conduit	
\$7.00	6 39.500	0.378	104.5	0.079	0.00	0.0	0.600	0	900	Pipe/Conduit	
S1.00	9 11.600	0.023	504.3	0.000	0.00	0.0	0.600	0	1200	Pipe/Conduit	
S1.01	0 46.000	0.092	500.0	0.000	0.00	0.0	0.600	0	1200	Pipe/Conduit	
				<u>Netwo</u>	rk Res	ults Table	<u>e</u>				
		_		- /							

PN	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Vel (m/s)	Cap (1/s)	
S7.001	83.868	0.597	0.0	0.99	215.4	
S10.000	84.400	0.188	0.0	0.90	63.8	
s7.002	83.654	0.859	0.0	1.08	306.0	
S11.000	84.685	0.219	0.0	1.01	71.1	
S12.000	84.685	0.191	0.0	1.09	77.2	
S11.001	84.316	0.410	0.0	1.12	123.8	
s7.003	83.355	1.698	0.0	1.24	548.9	
S13.000 S13.001 S13.002	84.175 84.043 83.917	0.611 0.664 0.703	0.0 0.0 0.0	1.00 1.00 1.00	217.0 217.4 217.4	
S7.004	83.064	2.488	0.0	1.40	888.5	
S14.000 S14.001	84.675 84.335	0.399 0.399	0.0	1.08 1.04	119.3 165.0	
S7.005 S7.006	82.911 82.830	2.930 3.009	0.0	1.39 3.07	882.7 1950.0	
S1.009 S1.010	82.152 82.129	5.183 5.183	0.0	1.66 1.67	1876.3 1884.5	

Clifton Scannell Emerson Associates		Page 3
Seefort Lodge Castledawson Avenue		
Blackrock		
County Dublin		Micco
Date 22/02/2017 10:17	Designed by noelm	
File Attenuation Area A (Line 1.000 & 7.000 &	Checked by	Dialitage
Micro Drainage	Network 2016.1.1	

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W	PN	Pipe Out Invert Level (m)	Diameter	PN	Pipes In Invert Level (m)	Diameter	Backdrop
		()		()		10001 ()	()		10001 ()	(1111)	(1111)
S14	85.900	1.425	Open Manhole	1200	s1.000	84.475	225				
s13.2	86.185	1.500	Open Manhole	1200	S2.000	84.685	300				
S13.1	86.100	1.642	Open Manhole	1200	S2.001	84.458	300	S2.000	84.458	300	
S13	86.000	2.028	Open Manhole	1350	S1.001	83.972	375	S1.000	84.122	225	
			-1					S2.001	84.384	300	337
S12	85.900	2.216	Open Manhole	1350	s1.002	83.684	450	S1.001	83.759	375	
S11	86.700	3.130	Open Manhole	1350	s1.003	83.570	450	S1.002	83.570	450	
s10.3	86.250	1.575	Open Manhole	1350	s3.000	84.675	375				
s10.2	86.250	1.835	Open Manhole	1350	s3.001	84.415	375	S3.000	84.415	375	
S10.1	86.525	2.188	Open Manhole	1350	s3.002	84.337	375	S3.001	84.337	375	
S10	86.700	3.445	Open Manhole	1500	S1.004	83.255	600	S1.003	83.405	450	
								S3.002	84.270	375	790
S9	86.700	3.593	Open Manhole	1500	s1.005	83.107	600	S1.004	83.107	600	
S8.2	86.250	1.575	Open Manhole	1350	S4.000	84.675	375				
S8.1	86.250	2.011	Open Manhole	1500	S4.001	84.239	525	S4.000	84.389	375	
S8	86.700	3.771	Open Manhole	1800	S1.006	82.929	750	S1.005	83.079	600	
								S4.001	84.155	525	1001
s7.1	86.250	1.425	Open Manhole	1200	S5.000	84.825	225				
s7	86.700	3.858	Open Manhole	1800	S1.007	82.842	750	S1.006	82.842	750	
								S5.000	84.576	225	1209
S6.2	86.250	1.575	Open Manhole	1350	s6.000	84.675	375				
S6.1	86.250	1.803	Open Manhole	1350	S6.001	84.447	375	S6.000	84.447	375	
36.1.1	86.525	2.150	Open Manhole	1350	S6.002	84.375	375	S6.001	84.375	375	
S6	86.700	4.149	Open Manhole	1800	S1.008	82.551	900	S1.007	82.701	750	
								S6.002	84.311	375	1235
S106	85.900	1.425	Open Manhole	1200	s7.000	84.475	225				
s105.3	86.185	1.500	Open Manhole	1200	S8.000	84.685	300				
5105.2	86.185	1.500	Open Manhole	1200	S9.000	84.685	300				
5105.1	86.185	1.945	Open Manhole	1350	S8.001	84.240	450	S8.000	84.390	300	
								S9.000	84.390	300	
S105	85.950	2.082	Open Manhole	1500	s7.001	83.868	525	S7.000	84.168	225	
								S8.001	84.213	450	270
5104.1	85.900	1.500	Open Manhole	1200	S10.000	84.400	300				
S104	86.100	2.446	Open Manhole	1500	s7.002	83.654	600	S7.001	83.729	525	
								S10.000	84.133	300	179
5103.3	86.185	1.500	Open Manhole	1200	S11.000	84.685	300				
s103.2	86.185	1.500	Open Manhole	1200	S12.000	84.685	300				
S103.1	86.185	1.869	Open Manhole	1350	S11.001	84.316	375	S11.000	84.391	300	
								S12.000	84.391	300	
S103	86.100	2.745	Open Manhole	1800	s7.003	83.355	750	s7.002	83.505	600	
								S11.001	84.273	375	543
SFU3	85.900	1.725	Open Manhole	1500	S13.000	84.175	525				
SFU2	86.000	1.957	Open Manhole	1500	S13.001	84.043	525	S13.000	84.043	525	
SFU1	86.100	2.183	Open Manhole	1500	S13.002	83.917	525	S13.001	83.917	525	
S102	86.050	2.986	Open Manhole	1800	S7.004	83.064	900	s7.003	83.214	750	
								S13.002	83.808	525	369
3101.2	86.250	1.575	Open Manhole	1350	S14.000	84.675	375				
101.1	86.250	1.915	Open Manhole	1350	S14.001	84.335	450	S14.000	84.410	375	
S101	86.150	3.239	Open Manhole	1800	s7.005	82.911	900	S7.004	82.911	900	
								S14 001	84 318	450	957

Manhole Schedules for Storm

								514.001	04.310	450	957
S100	86.400	3.570	Open Manhole	1800	S7.006	82.830	900	S7.005	82.830	900	
S5	86.700	4.548	Open Manhole	2100	S1.009	82.152	1200	S1.008	82.459	900	7
								S7.006	82.452	900	
S3	86.465	4.336	Open Manhole	2100	S1.010	82.129	1200	S1.009	82.129	1200	
S	85.650	3.613	Open Manhole	0		OUTFALL		S1.010	82.037	1200	
				1 1						I	

Clifton Scannell Emerson Associa	tes									Page 4
Seefort Lodge Castledawson Aven	ue									
Blackrock										4
County Dublin										
Date 22/02/2017 10:17				Desid	ned by	noelm				
File Attenuation Area A (Line 1.	~ 000	7.00	0 &	. Check	ked by					Drainage
Micro Drainage	u		• • • •	Netwo	$\frac{10u}{201}$	6 1 1				
				1100000	JIK ZOI	0.1.1				
			PIP	ELINE S	CHEDULE	S for S	Storm	L		
								•		
				Upst	ream Ma	nhole				
PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth		MH	MH DIAM., L*W	
	Sect	(mm)	Name	(m)	(m)	(m)	Conn	ection	(mm)	
S1.000	0	225	S14	85.900	84.475	1.200	Open	Manhole	1200	
							-			
S2.000	0	300	S13.2	86.185	84.685	1.200	Open	Manhole	1200	
S2.001	0	300	S13.1	86.100	84.458	1.342	Open	Manhole	1200	
S1.001	0	375	S13	86.000	83.972	1.653	Open	Manhole	1350	
\$1.002	0	450	S12	85.900	83.684	1.766	Open	Manhole	1350	
S1.003	0	450	S11	86.700	83.570	2.680	Open	Manhole	1350	
		275	010 0	06.050	04 675	1 000	0	Mania - 1	1050	
S3.000 S3.000	0	375	SIU.3 S10-2	86.250	84.6/5 84 415	1.200	Open Open	Manhole Manhole	1350	
\$3.002	0	375	S10.2	86.525	84.337	1.813	Open	Manhole	1350	
							-1			
S1.004	0	600	S10	86.700	83.255	2.845	Open	Manhole	1500	
S1.005	0	600	S9	86.700	83.107	2.993	Open	Manhole	1500	
S4.000	0	375	S8.2	86.250	84.675	1.200	Open	Manhole	1350	
S4.001	0	525	S8.1	86.250	84.239	1.486	Open	Manhole	1500	
S1.006	0	750	S8	86.700	82.929	3.021	Open	Manhole	1800	
\$5.000	0	225	S7.1	86.250	84,825	1,200	Open	Manhole	1200	
	Ū						opon			
S1.007	0	750	S7	86.700	82.842	3.108	Open	Manhole	1800	
		275	a c b	0,0 0,50	04 675	1 000	0	Manhala	1250	
56.000	0	375	S6.1	86.250	84.447	1.428	Open Open	Manhole	1350	
\$6.002	0	375	S6.1.1	86.525	84.375	1.775	Open	Manhole	1350	
							-			
S1.008	0	900	S6	86.700	82.551	3.249	Open	Manhole	1800	
S7 000	0	225	S106	85.900	84.475	1.200	Open	Manhole	1200	
37.000	0	220	2100	00.000	01.1/0	1.200	SPCII .		1200	
S8.000	0	300	s105.3	86.185	84.685	1.200	Open	Manhole	1200	
		200	0105 0	0.0 1.05	04 605	1 000	0	Ma 1 - 1	1000	
59.000	0	300	5105.2	80.185	84.685	1.200	open	manhole	1200	
S8.001	0	450	s105.1	86.185	84.240	1.495	Open	Manhole	1350	
							-			
				Downs	tream M	<u>lanhole</u>				
PN	Length	Slope	MH	C.Level	I.Level	D.Depth	1	MH	MH DIAM., L*W	
	(m)	(1:X)	Name	(m)	(m)	(m)	Cor	nection	(mm)	
S1.000	79.450	225.1	. s13	86.000	84.122	2 1.653	B Oper	n Manhole	1350	
							-			
S2.000	68.200	300.4	s13.1	86.100	84.458	3 1.342	2 Oper	Manhole	1200	
S2.001	22.250	300.7	S13	86.000	84.384	1.316	o Oper	n Manhole	1350	
S1.001	79.850	374.9	s12	85.900	83.759	9 1.766	5 Oper	n Manhole	1350	
S1.002	42.600	373.7	s11	86.700	83.570	2.680) Oper	Manhole	1350	
S1.003	74.350	450.6	5 S10	86.700	83.405	2.845	0per	n Manhole	1500	
aa	74 000	201 1		06 050	0/ /1-	. 1 400	0	Mank-1-	1250	
S3.000 S3.001	22.040	282.6	510.2 510.1	86.5250	84.415	7 1.813) Uper 3 Oper	n Manhole Manhole	e 1350 e 1350	
\$3.002	19.010	283.7	s10	86.700	84.270	2.055	5 Oper	Manhole	1500	

 S3.001
 22.040
 282.6
 S10.1
 86.525
 84.337
 1.813
 Open
 Manhole
 1350

 S3.002
 19.010
 283.7
 S10
 86.700
 84.270
 2.055
 Open
 Manhole
 1500

 S1.004
 74.050
 500.3
 S9
 86.700
 83.107
 2.993
 Open
 Manhole
 1500

 S1.005
 14.100
 503.6
 S8
 86.700
 83.079
 3.021
 Open
 Manhole
 1800

 S4.000
 83.075
 290.5
 S8.1
 86.250
 84.389
 1.486
 Open
 Manhole
 1500

 S4.001
 41.015
 488.3
 S8
 86.700
 84.155
 2.020
 Open
 Manhole
 1800

S1.006	43.450	499.4	S7	86.700	82.842	3.108	Open	Manhole	1800
S5.000	40.000	160.6	s7	86.700	84.576	1.899	Open	Manhole	1800
S1.007	70.600	500.7	S6	86.700	82.701	3.249	Open	Manhole	1800
s6.000	68.900	302.2	S6.1	86.250	84.447	1.428	Open	Manhole	1350
S6.001	21.850	303.5	S6.1.1	86.525	84.375	1.775	Open	Manhole	1350
S6.002	19.280	301.3	S6	86.700	84.311	2.014	Open	Manhole	1800
S1.008	45.900	498.9	S5	86.700	82.459	3.341	Open	Manhole	2100
s7.000	69.000	224.8	S105	85.950	84.168	1.557	Open	Manhole	1500
S8.000	71.150	241.2	S105.1	86.185	84.390	1.495	Open	Manhole	1350
S9.000	60.500	205.1	S105.1	86.185	84.390	1.495	Open	Manhole	1350
S8.001	11.150	413.0	S105	85.950	84.213	1.287	Open	Manhole	1500
			©1	982-201	6 XP Sol	ution	S		

Clifton Scannell Emerson Associate	es						Page 5
Seefort Lodge Castledawson Avenue	9						
Blackrock							<u> </u>
County Dublin							Micro
Date 22/02/2017 10:17		E	Designed by	noelm			Drainage
File Attenuation Area A (Line 1.00	0 & 7.00		Checked by				Diamage
Micro Drainage		N	Network 2016	.1.1			
		PIPELI	NE SCHEDULES	5 for Sto	rm		
		Ī	<u>Upstream Mar</u>	<u>hole</u>			
DN	Hud Diam	мн ста	evel T Level I	Denth	мн м	н ртам т.*w	
	Sect (mm)	Name (r	m) (m)	(m) Co	onnection	(mm)	
s7.001	o 525	S105 <mark>85</mark>	.950 83.868	1.557 Ope	en Manhole	1500	
\$10.000	o 300	S104.1 85	.900 84.400	1.200 Ope	en Manhole	1200	
\$7.002	o 600	S104 <mark>86</mark>	.100 83.654	1.846 Ope	en Manhole	1500	
S11.000	o 300	s103.3 <mark>86</mark>	.185 84.685	1.200 Ope	en Manhole	1200	
\$12.000	o 300	s103.2 <mark>86</mark>	.185 84.685	1.200 Ope	en Manhole	1200	
S11.001	o 375	s103.1 <mark>86</mark>	.185 84.316	1.494 Ope	en Manhole	1350	
s7.003	o 750	S103 <mark>86</mark>	.100 83.355	1.995 Ope	en Manhole	1800	
\$13.000	o 525	SFU3 85	.900 84.175	1.200 Ope	en Manhole	1500	
\$13.001 \$13.002	o 525 o 525	SFU2 86 SFU1 86	.000 84.043 .100 83.917	1.432 Ope 1.658 Ope	en Manhole en Manhole	1500	
S7.004	o 900	S102 86	.050 83.064	2.086 Ope	en Manhole	1800	
S14.000 S14.001	o 375 o 450	s101.2 86 s101.1 86	.250 84.675 .250 84.335	1.200 Ope 1.465 Ope	en Manhole en Manhole	1350 1350	
\$7.005	o 900	S101 86	.150 82.911	2.339 Ope	en Manhole	1800	
S7.006	o 900	S100 <mark>86</mark>	.400 82.830	2.670 Ope	en Manhole	1800	
S1.009 S1.010	o 1200 o 1200	S5 86 S3 86	.700 82.152 .465 82.129	3.348 Ope 3.136 Ope	en Manhole en Manhole	2100 2100	
		Do	ownstream Ma	anhole			
PN L.	ength Slope	MH C	Level T Level	D Denth	МН	МН ПТАМ Т.*W	
	(m) (1:X)	Name	(m) (m)	(m)	Connection	(mm)	
S7.001 69	9.500 500.0) S104 <mark>8</mark>	86.100 83.729	1.846 0	pen Manhole	1500	
S10.000 80	0.000 299.	5 S104 <mark>8</mark>	86.100 84.133	1.667 0	pen Manhole	1500	
S7.002 74	4.500 500.0) S103 <mark>8</mark>	86.100 83.505	1.995 0	pen Manhole	1800	
S11.000 71	1.150 242.0) s103.1 <mark>8</mark>	86.185 84.391	1.494 O	pen Manhole	1350	
S12.000 60	0.500 205.8	8 S103.1 <mark>8</mark>	86.185 84.391	1.494 0	pen Manhole	1350	
S11.001 11	1.150 259.3	8 S103 <mark>8</mark>	86.100 84.273	1.452 0	pen Manhole	1800	
\$7.003 70	0.740 501.	9 S102 8	86.050 83.214	2.086 0	pen Manhole	1800	
\$13.000 65	5.000 492.4	SFU2 8	86.000 84.043	1.432 0	pen Manhole	1500	
S13.001 61 S13.002 53	1.815 490. 3.510 490	5 SFU1 8 9 S102 8	86.100 83.917 86.050 83.808	1.658 O 1.717 O	pen Manhole pen Manhole	1500 1800	
S7.004 76	6.250 498.4	s102 0	86.150 82.911	2.339 0	pen Manhole	1800	
	2 000 070			1 405 -		1250	
S14.000 73 S14.001 6	6.450 379.4	siul.1 8 I S101 8	36.150 84.410 86.150 84.318	1.465 O 1.382 O	pen Manhole pen Manhole	1800	
S7.005 40	0.900 504.	9 S100 <mark>8</mark>	86.400 82.830	2.670 O	pen Manhole	1800	
\$7.006 39	9.500 104.	5 S5 <mark>8</mark>	86.700 82.452	3.348 0	pen Manhole	2100	

S1. S1.	009 11.600 9	504.3 S3 500.0 S	86.465 85.650	82.129 82.037	3.136 Open 2.413 Open	Manhole Manhole	2100 0
		©10	82-2016	XP Soli	tions		

Clifton Scannell Emerson Associates	Page 6						
Seefort Lodge Castledawson Avenue							
Blackrock							4
County Dublin							Micco
Date 22/02/2017 10:17			Desi	aned by r	loelm		
File Attenuation Area A (Line 1 000	£ 7 00	3 O	Chec	ked by	Drainage		
Micro Drainage	u ,	<u> </u>	Notw	$\frac{1}{2}$	1 1		
Micro Drainage			Netw	OIK 2010.	±•±		
		Σ	roa Si	mmary fo	r Storm		
		<u>11</u> .		ininiary 10.			
	Pipe	PIMP PIN	IP PIME	Gross	Imp.	Pipe Total	
	Number	Type Nar	ne (%)	Area (ha)	Area (ha)	(ha)	
	1.000	-	- 100	0.070	0.070	0.070	
	2.000	_	- 100		0.201	0.201	
	1.001	_	- 100	0.062	0.062	0.062	
	1.002	_	- 100	0.069	0.069	0.069	
	1.003	-	- 100	0.068	0.068	0.068	
	3.000	-	- 100	0.393	0.393	0.393	
	3.001	-	- 100	0.000	0.000	0.000	
	3.002	-	- 100	0.000	0.000	0.000	
	1.004	-	- 100	0.076	0.076	0.076	
	4 000	_	- 100	0.019	0.019	0.389	
	4.001	_	- 100	0.253	0.253	0.253	
	1.006	_	- 100	0.000	0.000	0.000	
	5.000	-	- 100	0.137	0.137	0.137	
	1.007	-	- 100	0.053	0.053	0.053	
	6.000	-	- 100	0.384	0.384	0.384	
	6.001	-	- 100	0.000	0.000	0.000	
	6.002	_	- 100		0.000	0.000	
	7.000	_	- 100	0.082	0.082	0.082	
	8.000	_	- 100	0.230	0.230	0.230	
	9.000	-	- 100	0.209	0.209	0.209	
	8.001	-	- 100	0.000	0.000	0.000	
	7.001	-	- 100	0.076	0.076	0.076	
	10.000	-	- 100	0.188	0.188	0.188	
	7.002	-	- 100	0.074	0.074	0.074	
	12 000	_	- 100	0.219	0.219	0.219	
	11.001	_	- 100	0.000	0.000	0.000	
	7.003	-	- 100	0.429	0.429	0.429	
	13.000	-	- 100	0.611	0.611	0.611	
	13.001	-	- 100	0.053	0.053	0.053	
	13.002	-	- 100	0.039	0.039	0.039	
	7.004	-	- 100	0.087	0.087	0.087	
	14.000	-	- 100	0.399	0.399	0.399	
	7.005	_	- 100	0.043	0.043	0.043	
	7.006	_	- 100	0.079	0.079	0.079	
	1.009	-	- 100	0.000	0.000	0.000	
	1.010	-	- 100	0.000	0.000	0.000	
				Total	Total	Total	
				5.183	5.183	5.183	

Free Flowing Outfall Details for Storm

Outfall Ding Number	Outfall	c.	Level	Ι.	Level	Ŧ	Min	D,L	W ()	
Pipe Number	Name		(m)		(m)	т.	(m)	(1111)	(nun)	
S1.010	S	8	35.650		82.037		78.632	0	0	

Clifton Scannell Emerson Associates			Page 7
Seefort Lodge Castledawson Avenue			
Blackrock			
County Dublin			Micco
Date 22/02/2017 10:17	Designed by noelm		
File Attenuation Area A (Line 1.000 & 7.000 &	Checked by		Digiliga
Micro Drainage	Network 2016.1.1		
Onli	ne Controls for Storm		
<u>Hydro-Brake® Optimum Man</u>	hole: S3, DS/PN: S1.010, '	Volume (m³): 25.8	
Design Head (r	n)	SHE-0245-4600-3775-4600 3.775	
Design Flow (1/3	5)	46.0	
Flush-Flo	D^{TM}	Calculated	
Objecti	ve Min	nimise upstream storage	
Applicatio	on	Surface	
Sump Availab.	Le	Yes	
Diameter (mi	n)	245	
Invert Level (I Minimum Outlet Bine Diameter (m	n)	82.129	
Suggested Manhole Diameter (mi	n) Site Specific Design (Contac	ct Hydro International)	
Control Points Head (m)	Flow (1/s) Control Point:	s Head (m) Flow (l/s)	
Design Point (Calculated) 3.775	46.0 Kic	ck-Flo® 2.182 35.3	
Flush-Flo™ 1.053	45.5 Mean Flow over Head	1 Range - 39.9	
The hydrological calculations have been based on the Head another type of control device other than a Hydro-Brake Op	Discharge relationship for the otimum® be utilised then these	e Hydro-Brake® Optimum as s storage routing calculatio	pecified. Should ns will be invalidated
Depth (m) FIOW (1/S) Depth (m) FIOW (1/S) Depth (m)	rrow (r/s) peptn (m) rrow (l/s	s) Debru (m) Erom (r\s) Dek	JCH (M) FLOW (L/S)

8.0	0.600	43.0	1.600	43.6	2.600	38.4	5.000	52.7	7.500	64.1
24.9	0.800	44.9	1.800	41.9	3.000	41.2	5.500	55.2	8.000	66.2
35.7	1.000	45.5	2.000	39.2	3.500	44.3	6.000	57.5	8.500	68.1
39.1	1.200	45.3	2.200	35.5	4.000	47.3	6.500	59.8	9.000	70.1
41.4	1.400	44.7	2.400	37.0	4.500	50.1	7.000	62.0	9.500	71.9
	8.0 24.9 35.7 39.1 41.4	8.0 0.600 24.9 0.800 35.7 1.000 39.1 1.200 41.4 1.400	8.00.60043.024.90.80044.935.71.00045.539.11.20045.341.41.40044.7	8.00.60043.01.60024.90.80044.91.80035.71.00045.52.00039.11.20045.32.20041.41.40044.72.400	8.00.60043.01.60043.624.90.80044.91.80041.935.71.00045.52.00039.239.11.20045.32.20035.541.41.40044.72.40037.0	8.00.60043.01.60043.62.60024.90.80044.91.80041.93.00035.71.00045.52.00039.23.50039.11.20045.32.20035.54.00041.41.40044.72.40037.04.500	8.00.60043.01.60043.62.60038.424.90.80044.91.80041.93.00041.235.71.00045.52.00039.23.50044.339.11.20045.32.20035.54.00047.341.41.40044.72.40037.04.50050.1	8.00.60043.01.60043.62.60038.45.00024.90.80044.91.80041.93.00041.25.50035.71.00045.52.00039.23.50044.36.00039.11.20045.32.20035.54.00047.36.50041.41.40044.72.40037.04.50050.17.000	8.00.60043.01.60043.62.60038.45.00052.724.90.80044.91.80041.93.00041.25.50055.235.71.00045.52.00039.23.50044.36.00057.539.11.20045.32.20035.54.00047.36.50059.841.41.40044.72.40037.04.50050.17.00062.0	8.00.60043.01.60043.62.60038.45.00052.77.50024.90.80044.91.80041.93.00041.25.50055.28.00035.71.00045.52.00039.23.50044.36.00057.58.50039.11.20045.32.20035.54.00047.36.50059.89.00041.41.40044.72.40037.04.50050.17.00062.09.500

Clifton Scannell Emerson Associates		Page 8
Seefort Lodge Castledawson Avenue		
Blackrock		L
County Dublin		Mirro
Date 22/02/2017 10:17 Designed by noelm		Drainage
File Attenuation Area A (Line 1.000 & 7.000 & Checked by		Diamage
Micro Drainage Network 2016.1.1		
Micro Drainage Network 2016.1.1 Storage Structures for Storm Tank or Pond Manhole: S3, DS/PN: S1 Invert Level (m) 82.129 Depth (m) Area (m ²) Depth (m) Area (m ²) Depth (m) Area (m ²) 0.000 290.0 1.200 290.0 1.205 7.8 3.270 7.	.010) Depth (m) Area (m ²) Depth (m) 8 3.272 5035.0 4.336	Area (m²)

Clifton So	cannel	l Emerson	Associ	ates								P	Page 9	
Seefort Lo	odge (Castledaws	son Ave	enue									5	
Blackrock													L.	
County Dub	olin												Micro	
Date 22/02	2/2017	10:17	·- ·			Designe	ed by noel	m					Drain	שחה
File Atter	nuation	n Area A	(Line 1	.000 &	7.000 &	Checked	d by						Didi	lage
Micro Dra:	ınage					Network	2016.1.1							
			Sumr	marv of	Critical Res	sults by	v Maximum	Level (F	Rank 1)	for Stor	n			
			Duill	Mary or	<u>orrerear</u> net	Jures Dy	- Hux Indin		(ank I)	101 00011				
	-			1 000		<u>Simulat</u>	ion Criteria	<u>1</u>		10	3 /1 01	0		
	Area	AL Reduction Hot Star	n Factor t (mins)	00011	Foul Sewage	per hect	: (Global) U are (1/s) 0	.500	MADD F	actor * 10n Tnlet	n³∕na Sto Coeffiec	rage 2 ient 0	2.000	
	H	ot Start Le	vel (mm)	0 A	dditional Flow	- % of I	otal Flow 0	.000 Flow	per Per	son per Day	/ (l/per/	day) 0	.000	
		Numbe	r of Tr	out IIIdaa	aranha () Num	bor of O	ffling Contr	colo O Nu	mbor of	mime /area D	isarama (0		
		Num	ber of (Dul Hydro Online Co	ontrols 1 Numbe	r of Sto:	rage Structu	ires 1 Nu	mber of :	Real Time C	ontrols (0		
			Ra	infall Mc	<u>Sy</u>	nthetic F	<u>Rainfall Det</u> SR M5-60 (mm	<u>ails</u> n) 17 400	Cv (Sum	mer) $1 000$				
			1(4)	Reg	gion Scotland a	nd Irela	nd Ratio	R 0.314	Cv (Win	ter) 1.000				
		Ma	irgin Io	r Flood H	Alsk Warning (m Analvsis Timest	m) ep 2.5 S(econd Increm	nent (Exte	0.0 ended) In	DVD Stat nertia Stat	us OFF us OFF			
					DTS Stat	us		(ON					
				Profile(s)					Summer	and Wint	er		
		I	Duration	(s) (min	s) 15, 30, 60,	120, 18	0, 240, 360,	480, 600), 720, 9	960, 1440, 3	2160, 288	80,		
		Return	Period(s) (vear	s)				4320, 53	760, 7200, 8	8640, 100 1	080		
		(Climate	Change (%)						-	10		
									Water	Surcharged	Flooded			Pipe
	US/MH		Return	Climate	First (X)	First (Y)) First (Z)	Overflow	Level	Depth	Volume	Flow /	Overflow	Flow
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	(m)	(m³)	Cap.	(l/s)	(1/s)
S1.000	S14	120 Summer	100	+10%	100/15 Summer				85.880	1.180	0.000	0.39)	13.0
S2.000	S13.2	60 Summer	100	+10% +10%	100/15 Summer				85.944	0.959	0.000	1.11		67.7
S1.001	S13.1 S13	120 Summer 120 Summer	100	+10%	100/15 Summer				85.835	1.488	0.000	0.87)	57.8
S1.002	S12	120 Summer	100	+10%	100/15 Summer				85.768	1.634	0.000	0.46	5	68.1
S1.003	S11	120 Summer	100	+10% +10%	100/15 Summer				85.735 85 907	1.715	0.000	0.54		76.5
s3.000	s10.3	60 Summer	100	+10%	100/15 Summer				85.763	0.837	0.000	1.03	}	104.3
S3.002	S10.1	120 Summer	100	+10%	100/15 Summer				85.723	1.011	0.000	0.79)	77.5
S1.004	S10	120 Summer 360 Winter	100	+10% +10%	100/15 Summer				85.688 85.678	1.833	0.000	0.56		156.0
S4.000	S8.2	60 Summer	100	+10%	100/15 Summer				85.812	0.762	0.000	1.17		129.8
S4.001	S8.1	360 Winter	100	+10%	100/15 Summer				85.678	0.914	0.000	0.24		46.3
S1.006 S5.000	S8 S7.1	360 Winter 60 Summer	100	+10%+10%	100/15 Summer 100/15 Summer				85.676	0.645	0.000	0.25)	47.2
S1.007	S7	360 Winter	100	+10%	100/15 Summer				85.673	2.081	0.000	0.26		127.0
S6.000	S6.2	60 Summer	100	+10%	100/15 Summer				85.764	0.714	0.000	1.18		128.0
S6.001	S6.1.1	360 Winter	100	+10%	100/15 Summer				85.672	0.833	0.000	0.20)	27.6
S1.008	S6	360 Winter	100	+10%	100/15 Summer				85.670	2.219	0.000	0.22		154.2
S7.000	S106	60 Summer	100	+10% +10%	100/15 Summer				85.825	1.125	0.000	0.82		27.6
\$9.000	s105.2	60 Summer	100	+10%	100/15 Summer				85.878	0.893	0.000	0.98	}	71.9
S8.001	S105.1	60 Summer	100	+10%	100/15 Summer				85.788	1.098	0.000	1.49)	143.5
s10.000	S105	60 Summer	100	+10%	100/15 Summer				85.812	1.112	0.000	1.02		62.4
s7.002	S104	120 Summer	100	+10%	100/15 Summer				85.721	1.467	0.000	0.56		155.9
S11.000 S12.000	S103.3 S103.2	60 Summer 60 Summer	100	+10% +10%	100/15 Summer 100/15 Summer				85.842 85.780	0.857	0.000	0.87)	63.9
S11.001	S103.1	120 Summer	100	+10%	100/15 Summer				85.704	1.013	0.000	0.89)	82.8
S7.003	S103	360 Winter	100	+10% +10%	100/15 Summer				85.680	1.575	0.000	0.25		121.6
s13.001	SFU2	60 Summer	100	+10%	100/15 Summer				85.725	1.157	0.000	0.93		184.4
s13.002	SFU1	30 Summer	100	+10%	100/15 Summer				85.683	1.241	0.000	1.36	5	265.5
S7.004 S14.000	\$102 \$101.2	360 Winter 60 Summer	100	+10% +10%	100/15 Summer 100/15 Summer				85.677	1.713	0.000	0.23	5	178.3
S14.001	S101.1	360 Winter	100	+10%	100/15 Summer				85.675	0.890	0.000	0.27		28.7
S7.005	S101	360 Winter	100	+10% +10%	100/15 Summer				85.674	1.863	0.000	0.30)	209.8
S1.009	S100 S5	360 Winter	100	+10%	100/15 Summer				85.668	2.316	0.000	0.10		369.2
S1.010	s3	360 Winter	100	+10%	100/15 Summer				85.667	2.338	0.000	0.03	}	45.4
						US/MH		Level						
					PN	Name	Status	Exceeded						
					S1.000) S14	SURCHARGED							
					S2.000) S13.2	SURCHARGED							
					S2.001 S1.001	L S13.1 L S13	SURCHARGED							
					s1.002	2 S12	SURCHARGED							
					S1.003	S S11	SURCHARGED							
					S3.001	L S10.3	SURCHARGED							
					S3.002	2 S10.1	SURCHARGED							
					S1.004	4 S10 5 <u>s</u> 9	SURCHARGED							
					S4.000) S8.2	SURCHARGED							
					©19	982-2016	5 XP Solut	ions						

Clifton Scannell Emerson Associates				Page 10
Seefort Lodge Castledawson Avenue				
Blackrock				
County Dublin				- Com
Date 22/02/2017 10.17	Design	ed by noel	lm	
$\begin{bmatrix} \text{File} & $	Chocko	d by		Drainage
File Acceluación Alea A (Line 1.000 & 7.000 &)			1	J
Micro Drainage	Networ	k 2016.1.1	L	
Summary of Critical Resu	ilts by	<u>/ Maximum</u>	Level (Rank 1) for Stor	<u>m</u>
	US/MH		Level	
PN	Name	Status	Exceeded	
\$4.001	S8.1	SURCHARGED		
S1.006	S8	SURCHARGED		
S5.000	\$7.1	SURCHARGED		
S1.007	57	SURCHARGED		
56.000	56.1	SURCHARGED		
56.002	S6.1.1	SURCHARGED		
S1.008	S6	SURCHARGED		
s7.000	S106	SURCHARGED		
\$8.000	S105.3	SURCHARGED		
\$9.000	s105.2	SURCHARGED		
\$8.001	S105.1	SURCHARGED		
S7.001	S105	SURCHARGED		
\$10.000	S104.1	SURCHARGED		
S7.002	S104 S103 3	SURCHARGED		
S12.000	S103.2	SURCHARGED		
s11.001	S103.1	SURCHARGED		
\$7.003	S103	SURCHARGED		
\$13.000	SFU3	SURCHARGED		
\$13.001	SFU2	SURCHARGED		
\$13.002	SFU1	SURCHARGED		
S7.004	S102	SURCHARGED		
\$14.000	S101.2	SURCHARGED		
S14.001	S101.1	SURCHARGED		
S7.005	S101 s100	SURCHARGED		
S1.009	S100	SURCHARGED		
s1.010	S3	SURCHARGED		

Project Number: 16_177

Project: Project G

Title: Engineering Planning Report - Drainage & Water

Appendix C

Surface Water Windes Network & Results for the Pipe Network's Critical Storms (West Basin)

Clifton Scannell Emerso	on Ass	ociate	S											Pag	e 1	
Seefort Lodge Castleda	wson	Avenue														
Blackrock															L.	
County Dublin															Mirco	
Date 22/02/2017 10:18						Design	ed by noe	lm							Draina	an
File Attenuation Area B	B.MDX					Checke	ed by									Ige
Micro Drainage						Networ	k 2016.1.	1								
			אתסשר	C EME			the Medifi	ad Da	tions	- 1 M	+ h	-1				
		<u>-</u>	STORM	SEWE.	K DESI	JUDYI	the Modili	Lea Ra		41 M6	etnoc	<u>1</u>				
					Networ	k Desid	gn Table f	for St	orm							
					« - Ind	dicates	pipe capaci	.ty < f	low							
	PN	Length	Fall	Slope	I.Area	T.E.	Base	k	HYD	DIA	Sect	ion Typ	e Auto			
		(m)	(m)	(1:X)	(ha)	(mins)	Flow (l/s)	(mm)	SECT	(mm)			Design			
S	1.000	54.315	0.172	315.0	0.281	5.00	0.0	0.600	0	375	Pipe	/Condui	t 🔒			
S	2.000	76.305	0.190	401.6	0.313	5.00	0.0	0.600	0	375	Pipe	/Condui	t 🔺			
									-		1	,	-			
S	1.001	81.495	0.163	500.0	0.090	0.00	0.0	0.600	0	600	Pipe	/Condui	t 🔒			
S	3.000	52.135	0.265	196.7	0.336	5.00	0.0	0.600	0	375	Pipe	/Condui	t 🔒			
S	3.001	48.475	0.260	186.4	0.000	0.00	0.0	0.600	0	375	Pipe	/Condui	t 🧕			
S	1.002	22.870	0.046	497.2	0.015	0.00	0.0	0.600	0	675	Pipe	/Condui	t 🔒			
S	1.003	49.335	0.099	500.0	0.075	0.00	0.0	0.600	0	750	Pipe	/Condui	t 🧕			
S	4.000	20.410	0.122	167.3	0.075	5.00	0.0	0.600	0	225	Pipe	/Condui	+ A			
5	1.000	20.410	0.122	107.0	0.070	0.00	0.0	0.000	0	220	rtpc	, condui				
S	1.004	18.785	0.038	500.0	0.000	0.00	0.0	0.600	0	750	Pipe	/Condui	t 🔒			
S	5.000	37.700	0.244	154.5	0.104	5.00	0.0	0.600	0	225	Pipe	/Condui	t 🔒			
	c 000	20 400	0 1 0 1	1.00 0	0 000	F 00	0.0	0 000		0.05	Dias					
5	6.000	30.460	0.181	108.3	0.088	5.00	0.0	0.600	0	223	Pipe	/Condui	τ 🞁			
S	5.001	6.765	0.032	211.4	0.000	0.00	0.0	0.600	0	300	Pipe	/Condui	t 🔒			
S	1.005	12.475	0.025	500.0	0.000	0.00	0.0	0.600	0	750	Pipe	/Condui	t 🔺			
S	1.006	6.375	0.013	500.0	0.000	0.00	0.0	0.600	0	750	Pipe	/Condui	t 🦂			
S	1.007	3.275	0.007	500.0	0.000	0.00	0.0	0.600	0	750	Pipe	/Condui	t 🔒			
	1.000	413.000	1.104	575.0	0.000	0.00	0.0	0.000	0	575	ripe	/ condur	C ण			
					Ne	twork	<u>Results T</u>	able								
			_	~	- (~				
	PN	Rair (mm/h	1 T. r) (mi	C. U .ns)	$S/IL \Sigma$ (m)	I.Area (ha)	Σ Base Flow (1/s)	Foul $(1/s)$	Add Fl	Low (Vel m/s)	Cap (1/s)	Flow (1/s)			
		、 ,	_ / (,	(/	()		(_, _,	(_/ -	· · ·	, .,	(_/ _/	(_/ _/			
	S1.00	0 100.	00 5	.89 83	3.625	0.281	0.0	0.0	10	0.1	1.02	112.2	111.6			
	S2.00	0 100.	00 6	.42 84	1.375	0.313	0.0	0.0	11	1.3	0.90	99.2«	124.3			
	S1 00	1 100	00 7	67 83	2 2 2 8	0 684	0 0	0 0	24	17	1 0.8	306 0	271 7			
	51.00	1 100.	00 /	.07 0.	.220	0.004	0.0	0.0	2 -	1./	1.00	500.0	2/1./			
	S3.00	0 100.	00 5	.67 84	1.325	0.336	0.0	0.0	12	2.1	1.29	142.3	133.5			
	\$3.00	1 100.	00 6	.28 84	1.060	0.336	0.0	0.0	12	2.1	1.32	146.2	133.5			
	S1.00	2 100.	00 8	.00 82	2.990	1.035	0.0	0.0	37	7.4	1.17	418.2	411.1			
	S1.00	3 100.	00 8	.66 82	2.869	1.110	0.0	0.0	4(0.1	1.24	549.9	440.9			
	S4.00	0 100.	00 5	.34 83	3.675	0.075	0.0	0.0	2	2.7	1.01	40.1	29.8			
	01 00	4 100	00 0	01 01		1 105	0.0	0 0			1 04	E 4 0 0	470 7			
	SI.00	4 100.	00 8	.91 82	2.770	1.185	0.0	0.0	42	2.8	1.24	549.9	4/0./			
	S5.00	0 100.	00 5	.60 83	8.675	0.104	0.0	0.0		3.8	1.05	41.7	41.3			
	S6.00	0 100	00 5	.51 83	3.840	0.088	0.0	0.0	-	3.2	1.01	40.0	35.0			
	20.00						0.0	5.0								
	S5.00	1 100.	00 5	.70 83	3.356	0.192	0.0	0.0	(5.9	1.08	76.2«	76.3			
	S1.00	5 100.	00 9	.08 82	2.732	1.377	0.0	0.0	49	9.7	1.24	549.9	547.0			
	S1.00	6 100.	00 9	.16 82	2.707	1.377	0.0	0.0	49	9.7	1.24	549.9	547.0			
	SI.00 S1.00	7 100. 8 75	00 9 61 16	.21 82 .63 82	2.695 2.688	1.377	0.0	U.0 0,0	49 49	9.7 9.7	1.24 0.93	549.9 102.7«	547.0			
			- 0				0.0	- • •	1.							

Clifton Scannell Emerson Associates		Page 2
Seefort Lodge Castledawson Avenue		
Blackrock		
County Dublin		Micco
Date 22/02/2017 10:18	Designed by noelm	
File Attenuation Area B.MDX	Checked by	Diamaye
Micro Drainage	Network 2016.1.1	

MH Name	ME CL (I (m)	MH Depth (m)	Conr	MH	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrog (mm)
S214	85.2	200	1.575	Open	Manhole	1350	S1.000	83.625	375				
S213.1	86.0)25	1.650	Open	Manhole	1350	s2.000	84.375	375				
S213	85.3	375	2.147	Open	Manhole	1500	S1.001	83.228	600	S1.000	83.453	375	
										S2.000	84.185	375	73
S212.2	85.9	900	1.575	Open	Manhole	1350	S3.000	84.325	375				
S212.1	85.6	535	1.575	Open	Manhole	1350	S3.001	84.060	375	S3.000	84.060	375	
S212	85.3	375	2.385	Open	Manhole	1500	S1.002	82.990	675	S1.001	83.065	600	
										S3.001	83.800	375	51
S211	85.3	305	2.436	Open	Manhole	1800	S1.003	82.869	750	S1.002	82.944	675	
S210.1	85.1	100	1.425	Open	Manhole	1200	S4.000	83.675	225				
S210	85.1	170	2.400	Open	Manhole	1800	S1.004	82.770	750	S1.003	82.770	750	
										S4.000	83.553	225	25
S209.3	85.1	100	1.425	Open	Manhole	1200	S5.000	83.675	225				
S209.2	85.2	265	1.425	Open	Manhole	1200	S6.000	83.840	225				
S209.1	85.3	350	1.994	Open	Manhole	1200	S5.001	83.356	300	S5.000	83.431	225	
										S6.000	83.659	225	22
S209	85.1	185	2.453	Open	Manhole	1800	S1.005	82.732	750	S1.004	82.732	750	
										S5.001	83.324	300	14
S208	85.1	185	2.478	Open	Manhole	1800	S1.006	82.707	750	S1.005	82.707	750	
S207	85.1	185	2.490	Open	Manhole	1800	S1.007	82.695	750	S1.006	82.695	750	
S206	85.1	185	2.497	Open	Manhole	1800	S1.008	82.688	375	S1.007	82.688	750	
S303	85.9	900	4.316	Open	Manhole	0		OUTFALL		S1.008	81.584	375	

Manhole Schedules for Storm
Clifton Scannell Emerso	n Associat	ces									Page 3
Seefort Lodge Castleda	wson Avenı	Je									
Blackrock											<u> </u>
County Dublin											Micco
Date 22/02/2017 10:18					Desig	gned by	noelm				
File Attenuation Area B	.MDX				Checl	Checked by					Drainage
Micro Drainage					Netwo	ork 201	6.1.1				
				PIPE	ELINE S	CHEDULE	S for S	Storm	<u>ı</u>		
					Upst	ream Ma	nhole				
	DN	Hud	Diam	MH		T. Lowol	D Donth		MU	MU DTAM T +W	
	EN	Sect	(mm)	Name	(m)	(m)	(m)	Conn	ection	(mm)	
					、 ,	\	()				
	S1.000	0	375	S214	85.200	83.625	1.200	Open	Manhole	1350	
	S2 000	0	375	9213 1	86 025	84 375	1 275	Onen	Manhole	1350	
	52.000	0	575	0210.1	00.025	04.373	1.275	open	nannore	1000	
	S1.001	0	600	S213	85.375	83.228	1.547	Open	Manhole	1500	
	~~ ~~		0.5.5	2010 0	05 000	04 005	1 000	~		1050	
	S3.000 S3.001	0	375	S212.2 S212 1	85.900	84.325 84.060	1.200	Open	Manhole Manhole	1350	
	53.001	0	5,5,	~~	55.055	01.000	1.200	open		1000	
	S1.002	0	675	S212	85.375	82.990	1.710	Open	Manhole	1500	
	S1.003	0	750	S211	85.305	82.869	1.686	Open	Manhole	1800	
	S4 000		225	0210 1	95 100	02 675	1 200	0000	Manhala	1200	
	54.000	0	225	5210.1	85.100	03.075	1.200	open	Mannore	1200	
	S1.004	0	750	S210	85.170	82.770	1.650	Open	Manhole	1800	
	S5.000	0	225	s209.3	85.100	83.675	1.200	Open	Manhole	1200	
	56 000	0	225	5209 2	85 265	83 840	1 200	Open	Manhole	1200	
	50.000	0	220	0200.2	00.200	00.010	1.200	open	nannore	1200	
	S5.001	0	300	s209.1	85.350	83.356	1.694	Open	Manhole	1200	
	-1 -0.5			~ ~ ~ ~ ~			1 500			1000	
	SI.005 S1.006	0	750	S209 S208	85.185	82.732	1.703 1.728	Open	Manhole Manhole	1800	
	s1.000	0	750	S200	85.185	82.695	1.740	Open	Manhole	1800	
	S1.008	0	375	S206	85.185	82.688	2.122	Open	Manhole	1800	
					Downs	troam N	lanhole				
					DOWIIS						
	PN I	Length	Slope	e MH	C.Leve	l I.Leve	1 D.Dept	h Co	MH	MH DIAM., L*W	
		(111)	(1:1)	Name	(111)	(111)	(111)	0	mection	(11111)	
	S1.000	54.315	5 315.0	D S213	85.37	5 83.45	3 1.54	7 Ope	n Manhol	e 1500	
	00.000	76 000	= 401	c		E 04 10	E 0.01	E O	m Maral 1	1500	
	52.000	/6.305	o 401.0	b S213	85.37	5 84.18	5 0.81	o Ope	n Manhol	e 1500	
	S1.001	81.495	5 500.0) s212	85.37	5 83.06	5 1.71	900 0	n Manhol	e 1500	
								-1-0			
	S3.000	52.135	5 196.7	7 S212.1	85.63	5 84.06	0 1.20	0 Ope	n Manhol	e 1350	
	S3.001	48.475	5 186.4	4 S212	85.37	5 83.80	0 1.20	0 Ope	n Manhol	e 1500	
	S1 002	22 870	1 497 1	2 9211	85 30	5 82 94	4 1 69	6 000	n Manhol	e 1800	
	S1.002	49.335	5 500.0	D S210	85.17	0 82.77	0 1.65	0 Ope	n Manhol	e 1800	
								1 -			
	S4.000	20.410	0 167.3	3 S210	85.17	0 83.55	3 1.39	2 Ope	n Manhol	e 1800	
	S1 004	10 705	5 500 0	1 9200	95 10	5 QO 70	2 1 70	3 000	n Manhel	0 1000	
	51.004	10./83	J JUU.(5 5209	00.18	02.13	۲./۵	5 ope	II Mannol	E T000	
	S5.000	37.700	0 154.5	5 s209.1	85.35	0 83.43	1 1.69	4 Ope	n Manhol	e 1200	
								-			
	S6.000	30.460	168.3	3 S209.1	85.35	0 83.65	9 1.46	6 Ope	n Manhol	e 1200	

©1982-2016 XP Solutions

S5.001 6.765 211.4 S209 85.185 83.324 1.561 Open Manhole

S1.00512.475500.0S20885.18582.7071.728Open ManholeS1.0066.375500.0S20785.18582.6951.740Open ManholeS1.0073.275500.0S20685.18582.6881.747Open ManholeS1.008413.860375.0S30385.90081.5843.941Open Manhole

STILLON Scannell Emerson Associates						Page 4		
Seefort Lodge Castledawson Avenue								
Blackrock						4		
County Dublin						Micco		
Date 22/02/2017 10:18		Desig	ned by no	oelm				
File Attenuation Area B.MDX		Check	ked by			Drainage		
Micro Drainage	Network 2016.1.1							
<u>2</u>	Are	ea Sur	mmary for	Storm				
Pipe PIMP P:	IMP	PIMP	Gross	Imp.	Pipe Total			
Number Type Na	ame	(%)	Area (ha)	Area (ha)	(ha)			
1.000 -	_	100	0.281	0.281	0.281			
2.000 -	-	100	0.313	0.313	0.313			
1.001 -	-	100	0.090	0.090	0.090			
3.000 -	-	100	0.336	0.336	0.336			
3.001 -	-	100	0.000	0.000	0.000			
1.002 -	-	100	0.015	0.015	0.015			
1.003 -	-	100	0.075	0.075	0.075			
4.000 -	-	100	0.075	0.075	0.075			
1.004 -	-	100	0.000	0.000	0.000			
5.000 -	-	100	0.104	0.104	0.104			
6.000 -	-	100	0.088	0.088	0.088			
5.001 -	-	100	0.000	0.000	0.000			
1.005 -	-	100	0.000	0.000	0.000			
1.006 -	-	100	0.000	0.000	0.000			
1.007 -	-	100	0.000	0.000	0.000			
1.008 -	-	100	0.000	0.000	0.000			
			Total	Total	Total			
			1.377	1.377	1.377			
Free Flor	wir	ng Out	tfall Det	ails for	Storm			
Outfall Outf	fal	1 с. і	Level I. Le	vel Min	D,L W			
Pipe Number Nam	me	(1	m) (m)	I. Lev	vel (mm) (mm)			
				(m)				
S1.008 S	s30:	3 85	5.900 81.	584 80.	772 0 0			

Clifton Scannell Emerson Associates		Page 5
Seefort Lodge Castledawson Avenue		
Blackrock		<u> </u>
County Dublin		Micco
Date 22/02/2017 10:18	Designed by noelm	
File Attenuation Area B.MDX	Checked by	Diamaye
Micro Drainage	Network 2016.1.1	
<u>Onl</u>	ine Controls for Storm	
<u>Hydro-Brake® Optimum Man</u>	hole: S206, DS/PN: S1.008, Volume (m³): 7.0	
Unit Reference MD-SHE-0196-24 Design Head (m) Design Flow (l/s) Flush-Flo™ Objective Minimise upst Application	400-2300-2400 Sump Available Yes 2.300 Diameter (mm) 196 24.0 Invert Level (m) 82.688 Calculated Minimum Outlet Pipe Diameter (mm) 225 tream storage Suggested Manhole Diameter (mm) 1800 Surface	
Control Points Head (m)	Flow (1/s) Control Points Head (m) Flow (1/s)	
Design Point (Calculated) 2.300 Flush-Flo™ 0.668	23.8 Kick-Flo® 1.406 18.9 23.8 Mean Flow over Head Range - 20.8	
The hydrological calculations have been based on the Head another type of control device other than a Hydro-Brake O	//Discharge relationship for the Hydro-Brake® Optimum as spec ptimum® be utilised then these storage routing calculations	cified. Should will be invalidated
Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m)	Flow (l/s) Depth (m) Flow (l/s) Depth (m) Flow (l/s) Depth	(m) Flow (l/s)
0.1006.80.60023.81.6000.20018.30.80023.71.8000.30021.41.00023.12.0000.40022.81.20021.82.2000.50023.51.40019.02.400	20.12.60025.35.00034.6721.23.00027.15.50036.2822.33.50029.26.00037.8823.34.00031.16.50039.3924.34.50032.97.00040.79	.500 42.1 .000 43.4 .500 44.7 .000 46.0 .500 47.2

Clifton S	cannel	l En	nerson	Assoc	iates								F	age 7	
Seefort L	odge	Cast	ledaw	son Ave	enue										
Blackrock														Ч.	
County Du	blin														m
Date 22/0	2/2017	10:	:18				Designed by noelm							MICO	
File Atte	nuatio	n Ar	rea B.I	MDX			Checked	l bv						Drair	nage
Micro Dra	inage						Network	· 2016 1	1						
MICIO DIA	Inage						NECWOIN	. 2010.1.	±						
				Sum	mary of	Critical Re	esults by	Maximum	Level (1	Rank 1) for Stor	<u>rm</u>			
							Simulati	lon Criter	la						
	Are	al Re	eductio	n Factor	r 1.000	Manhole Head	lloss Coeff	(Global)	0.500	MADD	Factor * 10	m³/ha St	orage 2	.000	
	ц	He of St	ot Star tart Lo	t (mins)) 0	Foul Sewag	e per hect	are (l/s)	0.000 0.000 Elor	w ner P	Inlet	Coeffie	cient (.800	
	п	01 5	LAIL LE	ver (nun,) 0.	Additional Fio	W - 5 OI I	OLAI FIOW	0.000 FIO	w per r	erson per Da	у (турег	/uay) u	.000	
			Numbe	er of In	put Hydr	ographs 0 Nu	umber of Of	fline Cont	crols 0 Nu	mber of	Time/Area	Diagrams	0		
			Nur	mber of	Online C	ontrols 1 Numb	per of Stor	age Struct	ures 1 Nu	mber of	Real Time	Controls	0		
						<u>s</u>	ynthetic R	ainfall De	tails						
				Ra	infall M	odel	FS	R M5-60 (n	nm) 17.400	Cv (Su	mmer) 1.000				
					Re	gion Scotland	and Irelan	d Ratio	R 0.314	Cv (Wi	nter) 1.000				
				Mon	ain for	Elood Dick Mar	ming (mm)		tatua ON	Thomas	a Status OF	F			
				Mar	gin for	Analysis	Timester	Fine DVD S	Status OFF	Inerti	a status OF	E			
						1111019010	, 11mc0ccp	11110 212 1	000000000000000000000000000000000000000						
						<i>.</i> .					-				
				Duration	Profile (s) (mir	(S) 15 30 60	N 120 180	240 360	1 480 60	0 720	960 1440	and Wir	ter 180		
				Duració	I(5) (IIIII	15) 13, 30, 80	5, 120, 180	, 240, 500	, 400, 00	4320,	5760, 7200,	8640, 10	080		
			Return	Period	(s) (year	rs)				,	,	,	100		
				Climate	Change	(응)							10		
										Water	Surcharged	Flooded			Pipe
	US/MH	-		Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Level	Depth	Volume	Flow /	Overflow	Flow
PN	Name	S	torm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	(m)	(m³)	Cap.	(1/s)	(1/s)
S1.000	S214	30	Summer	100	+10%	100/15 Summer				85.004	1.004	0.000	1.01		105.5
s2.000	S213.1	30	Summer	100	+10%	100/15 Summer				85.136	0.386	0.000	1.44		135.7
S1.001	S213	180	Winter	100	+10%	100/15 Summer				84.912	1.085	0.000	0.28		78.7
S3.000	S212.2	30	Summer	100	+10%	100/15 Summer				85.146	0.446	0.000	1.13		149.3
S3.001	S212.1	30	Summer	100	+10%	100/15 Summer				84.940	0.505	0.000	0.87		117.2
S1.002	S212	180	Winter	100	+10%	100/15 Summer				84.908	1.243	0.000	0.39		118.9
S1.003	S211	180	Winter	100	+10%	100/15 Summer				84.905	1.286	0.000	0.27		127.2
S4.000	S210.1	180	Winter	100	+10%	100/15 Summer				84.904	1.004	0.000	0.24		8.6
S1.004	S210	180	Winter	100	+10%	100/15 Summer				84.902	1.382	0.000	0.41		135.2
S5.000	S209.3	180	Winter	100	+10%	100/15 Summer				84.906	1.006	0.000	0.30		12.0
S6.000	S209.2	180	Winter	100	+10%	100/15 Summer				84.905	0.840	0.000	0.27		10.1
S5.001	S209.1	180	Winter	100	+10%	100/15 Summer				84.901	1.245	0.000	0.40		21.9
S1.005	S209	180	Winter	100	+10%	100/15 Summer				84.900	1.418	0.000	0.59		156.4
S1.006	S208	180	Winter	100	+10%	100/15 Summer				84.898	1.440	0.000	0.48		155.8
S1.007	S207	180	Winter	100	+10%	100/15 Summer				84.896	1.452	0.000	0.43		155.2
S1.008	S206	180	Winter	100	+10%	100/15 Summer				84.895	1.832	0.000	0.23		23.4

PN	US/MH Name	Status	Level Exceeded
S1.000	S214	SURCHARGED	
S2.000	S213.1	SURCHARGED	
S1.001	S213	SURCHARGED	
S3.000	S212.2	SURCHARGED	
S3.001	S212.1	SURCHARGED	
S1.002	S212	SURCHARGED	
S1.003	S211	SURCHARGED	
S4.000	S210.1	SURCHARGED	
S1.004	S210	SURCHARGED	
S5.000	S209.3	SURCHARGED	
S6.000	S209.2	SURCHARGED	
S5.001	S209.1	SURCHARGED	
S1.005	S209	SURCHARGED	
S1.006	S208	SURCHARGED	
S1.007	S207	SURCHARGED	
S1.008	S206	SURCHARGED	

Project: Project G

Title: Engineering Planning Report - Drainage & Water

Appendix D

Swale Design Calculations

	Project				Job no. 16	6 177		
Tedas	Calco for				Start page po /	 Povision		
		15min 1yr S	Swale Design		Start page 10./	1		
	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved d		
	NM	16/11/2016	HF	16/11/2016	PF	16/11/20		
	PDESIGN							
In accordance with CIRIA	publication C697 - T	he SUDS Mai	nual					
					Tedds calcul	ation version 2		
Swale details			~					
Longitudinal gradient of swal		w = 2.000						
Side alone gradient of swale	le	S = 0.001						
Side slope gradient of swale		S = 0.330						
		h = 0.35						
Length of swale		L = 30 m		0				
				3				
				₩ 10				
				¥				
1								
3	4	2000		Τ				
		2000	P					
4		—3534—						
	Cross	s section of s	wale					
Design rainfall intensity								
Location of catchment area		Other						
Storm duration		D = 15 min	1					
Return period		Period = 1	yr					
Ratio 60 min to 2 day rainfal	l of 5 yr return period	r = 0.300						
5-year return period rainfall of	of 60 minutes duratio	n M5_60min	= 17.4 mm					
Increase of rainfall intensity	due to global warmin	$g p_{climate} = 10$	%					
Factor Z1 (Wallingford proce	edure)	Z1 = 0.59						
Rainfall for 15min storm with	5 vear return period	M5 15min = $71 \times M5$ 60min $\times (1 + p_{climate}) = 11.3$ mm						
Factor 72 (Wallingford proce	edure)	Z2 = 0.68						
Rainfall for 15min storm with	1 vear return period	$M1 \ 15min = 72 \times M5 \ 15min = 77 mm$						
Design rainfall intensity	r year retain penoa	M_{1}^{-1} M_{1}^{-1} M_{2}^{-1} $M_{$						
			10mm/ D = 30.					
Maximum surface water ru	noff							
Catchment area		$A_{catch} = 100$)0 m²					
Percentage of area that is in	npermeable	p = 50 %						
Maximum surface water rund	off	$Q_{max} = A_{cat}$	$_{ch} \times p \times I_{max} = 4$.3 l/s				
Calculate depth of flow usi	ing iteration of Man	ning's formul	a					
Minimum depth of flow		x = 103 mr	n					
	Warı	ning - Depth o	of flow should	be less than 100) mm for effe	ective filtra		
Area of flow		A = (w + x)	/ s) × x = 0.238	8 m ²				
Perimeter of flow		P = w + 2 >	< √(x² + (x / s)²)	= 2.658 m				
Hydraulic radius		R = A / P =	• 0.090 m					
Check flow using Manning e	quation	Q _{check} = A >	< (R / 1 m) ^{2/3} × 3	S ^{1/2} × 1 m/s / n =	4.3 l/s			
Maximum velocity of flow		V _{max} = Q _{max}	_x / A = 0.018 m	/s				
				ancourago cotti	amont and n	rovent erec		
Waximum velocity of new	PASS - v	elocity is sm	all enougn to	encourage setti	sinent and p	event eros		
Minimum width	PASS - v	elocity is sm	all enough to	encourage setti	ement and p	eventeros		

TEKLA Tedds	Project		Job no. 16_177			
	Calcs for	15min 1yr S	Start page no./Revision 2			
	Calcs by NM	Calcs date 16/11/2016	Checked by HF	Checked date 16/11/2016	Approved by PF	Approved date 16/11/2016

Minimum required swale width

 $w_{\text{total,min}} = 2 \times (x + d_{\text{free}}) \ / \ s + w = \textbf{3.534} \ m$

	Project				Job no. 16	6 177
Teads	Calcs for				Start page po /	
		15min 100yr	Swale Design		otart page no./	1
	Calcs by NM	Calcs date 16/11/2016	Checked by HF	Checked date 16/11/2016	Approved by PF	Approved date 16/11/2016
SWALE AND FILTER STRIF	PDESIGN ublication C697	- The SUDS Mar	nual		Tedds calcul	ation version 2.0.0
Swale details						
Width of swale base		w = 2.000 r	n			
Longitudinal gradient of swal	е	S = 0.001				
Side slope gradient of swale		s = 0.330				
Manning number		n = 0.35				
Length of swale		L = 50 m				
1				► 150		
3		2000				
L		2000		. 1		
		4049				
	Cro	oss section of s	wale			
Design rainfall intensity Location of catchment area		Other				
Storm duration		D = 15 min				
Return period		Period = 10)0 yr			
Ratio 60 min to 2 day rainfall	of 5 yr return peri	od r = 0.300				
5-year return period rainfall c	f 60 minutes dura	tion M5_60min	= 17.4 mm			
Increase of rainfall intensity of	lue to global warn	ning p _{climate} = 10	%			
Factor Z1 (Wallingford proce	dure)	Z1 = 0.59				
Rainfall for 15min storm with	5 year return peri	od M5_15min _i	$=$ Z1 \times M5_60n	$min imes (1 + p_{climate})$	= 11.3 mm	
Factor Z2 (Wallingford proce	dure)	Z2 = 1.97				
Rainfall for 15min storm with	100 year return p	eriod M100_15m	in = $Z2 \times M5_1$	5min _i = 22.3 mm	1	
Design rainfall intensity		$I_{max} = M100$	0_15min / D = 8	9.1 mm/hr		
Maximum surface water ru	noff					
Catchment area		A _{catch} = 100	0 m ²			
Percentage of area that is im	permeable	p = 50 %				
Maximum surface water runc	ff	$Q_{max} = A_{catc}$	$h \times p \times I_{max} = 12$	2.4 l/s		
Calculate depth of flow usi	ng iteration of M	anning's formul	а			
Minimum depth of flow		x = 188 mn	n			
	W	arning - Depth o	of flow should l	be less than 100) mm for effe	ctive filtration
Area of flow		A = (w + x)	/ s) × x = 0.483	m²		
Perimeter of flow		P = w + 2 ×	$(\sqrt{(x^2 + (x / s)^2)})$	= 3.201 m		
Hydraulic radius		R = A / P =	0.151 m			
Check flow using Manning ed	quation	$Q_{check} = A \times$	< (R / 1 m) ^{2/3} × S	$S^{1/2} \times 1 \text{ m/s} / \text{n} =$	12.4 l/s	
Maximum velocity of flow		V _{max} = Q _{max}	. / A = 0.026 m/s	s		
	PASS	- velocity is sma	all enough to e	encourage settle	ement and p	revent erosior
Minimum width						

TEKLA Tedds	Project		Job no. 16_177			
	Calcs for	15min 100yr	Start page no./Revision 2			
	Calcs by NM	Calcs date 16/11/2016	Checked by HF	Checked date 16/11/2016	Approved by PF	Approved date 16/11/2016

Minimum required swale width

 $w_{total,min} = 2 \times (x + d_{free}) / s + w = 4.049 m$

Project: Project G

Title: Engineering Planning Report - Drainage & Water

Appendix E

Proposed Hydrodynamic Separator (Or Similar)

CD510404	CD50604	CD50606	CD50804	CD50806	CD50808	CD51010	CD51012	CD51015				
370	370	370	370	370	370	500	500	500				
444	815	615	810	830	810	800	800	830				
1250	1985	1985	2080	2300	2480	2800	3000	3330				
800	1200	200	1500	1500	1500	2000	2000	2000				
1112	1665	1665	1966	1966	1966	2475	2475	2475				
400	700	700	700	700	800	1000	1000	1000				
400	600	600	800	800	800	1000	1000	1000				
400	400	600	400	600	800	1000	1200	1500				
	CD510404 370 444 1250 800 1112 400 400 400	CDS10404 CDS0604 370 370 444 815 1250 1985 800 1200 1112 1665 400 700 400 600 400 400	CD510404 CD50604 CD50606 370 370 370 444 815 615 1250 1985 1985 800 1200 200 1112 1665 1665 400 700 700 400 600 600	CD510404 CD50604 CD50606 CD50804 370 370 370 370 444 815 615 810 1250 1985 1985 2080 800 1200 200 1500 1112 1665 1665 1966 400 700 700 700 400 600 600 800	CD510404 CD50604 CD50606 CD50804 CD50806 370 370 370 370 370 370 444 815 615 810 830 1250 1985 1985 2080 2300 800 1200 200 1500 1500 1500 1112 1665 1665 1966 1966 400 700 700 700 800 400 600 600 800 800	CD510404 CD50604 CD50606 CD50804 CD50806 CD50806 370 370 370 370 370 370 370 444 815 615 810 830 810 1250 1985 1985 2080 2300 2480 800 1200 200 1500 1500 1500 1112 1665 1665 1966 1966 1966 400 700 700 700 800 800 800 400 600 600 800 800 800 800 800	CD510404 CD50604 CD50606 CD50804 CD50806 CD50808 CD50808 CD51010 370 370 370 370 370 370 370 500 444 815 615 810 830 810 800 1250 1985 1985 2080 2300 2480 2800 800 1200 200 1500 1500 1500 2000 1112 1665 1665 1966 1966 1966 2475 400 700 700 700 800 1000 1000 400 600 600 800 800 1000 1000	CD510404 CD50604 CD50606 CD50804 CD50806 CD50808 CD51010 CD51012 370 370 370 370 370 370 370 500 500 444 815 615 810 830 810 800 800 1250 1985 1985 2080 2300 2480 2800 3000 800 1200 200 1500 1500 1500 2000 2000 1112 1665 1665 1966 1966 1966 2475 2475 400 700 700 700 800 1000 1000 400 600 600 800 800 1000 1000				

Selection Table — CDS Polypropylene Manhole Units

Model Reference	Hydraulic Pesk Flow Rate Vs	Treatment Flow Rate Vs	Drainage Area — Impermeable m ²	Chamber Diameter (mm)	Internal Pipe Diameter (mm)
CD5 0404	30	12.5	2,000	900	150/225
CD5 0604	70	23	5,000	1200	225
CDS 0606/01	140	38	10,000	1200	225-375
CDS 0606/02	200	38	15,000	1200	225-375
CD5 0806	350	49	25,000	1500	450
CD5 0808	400	72	30,000	1500	450
CD5 1010	480	116	35,000	2000	450
CDS 1012	550	152	40,000	2000	450/750
CDS 1015 CDS 0804	700 275	211 31	50,000 20,000	2000	450/750 300

Proposed Peak Fow Rate for each model calculated using Rational Lloyd Davis with a rainfall intensity of 50mm/hr. For greater flows — special design/ construction required.

675 dia (min) - or client specification

Socket jointed with polyarethane trastic sealarti

_ Transition Sta

In-Line CDS

CDC Dimensions from

For small catchment, these units are used within the drainage system in-line and are supplied as BBA Approved* complete manhole polypropylene units from the selection table above.

Off-Line CDS

Larger catchment areas and retrofit projects designed with larger surface runoff conveyance capacity can receive treatment using a CDS unit placed adjacent to the storm pipeline. Water is channeled to these offline CDS configurations using a diversion structure. The diversion structure and

its weir send the water quality flow to the offline CDS unit and also ensure larger flow events from less frequent storm events properly bypass the offline unit without cause flooding upstream of the unit.

Model Designation

A four digit number representing the screen diameter and screen height then follows to give the standard model designation for a CDS screen for installation into standard commercially available pre-fabricated manhole chambers. Example: CDS 0806 designates a separation screen dia. 0.8 m and screen height of 0.6m.

Note

Rising Shaft

Support

- * Drawings and specifications are available at contechstormwater.com.
- Site-specific design support is available from our engineers.

800.338.1122

contechstormwater.com

©2008 CONTECH Stammatar Solution

Nothing in this catalog should be construed as an expressed warrantly or an implied warrantly of marchantability or fitness for any particular purpose. See the CONTECH standard quotation or admonifedgement for applicable warranties and other terms and conditions of sale.

The product(s) described may be protected by one or more of the following US patents: 5,322,629; 5,624,576; 5,707,527; 5,759,415; 5,788,848; 5,985,157; 6,027,639; 6,350,374; 6,406,218; 6,641,720; 6,511,595; 6,649,048; 6,991,114; 6,998,038; 7,186,058; 7,296,692; 7,297,266 related foreign patents or other patents pending. CD5 is a trademark of CONTECH Construction Products Inc.

Project: Project G

Title: Engineering Planning Report - Drainage & Water

Appendix F

Proposed Bypass Oil Separator (Or Similar)

The Conder Range of Bypass Separators

The Conder Range of Bypass Separators are used to fully treat all flows generated by rainfall rates of up to 6.5mm/hr. Bypass Separators are used when it is considered an acceptable risk not to provide full treatment for high flows, for example where only small spillages occur and the risk of spillage is small.

 (\mathbf{r})

Performance

Conder Bypass Separators have been designed to treat all flow up to the designed nominal size. Any flow in excess of the nominal size is allowed to bypass the separation chamber thereby keeping the separated and trapped oil safe.

How it Works

Step 1

۲

During the early part of a rain storm, which is a time of high oil contamination, all of the contaminated water flow passes through the sediment collection chamber and enters the separation chamber through a patented oil skimming and filter device.

Step 2

All of the oil then proceeds to the separation chamber where it is separated to the Class 1 standard of 5 mg/l and safely trapped.

Typical Application

- Car parks
- Roadways and major trunk roads
- Light industrial and goods yards

Features and Benefits

- Innovative design
- Compact and easy to handle/install
- Fully compliant to the Environment Agency's PPG3 guidelines
- Low product and install costs
- Full BSI certification
- Exceeds industry standards
- Easy to service
- Fully tested and verified with a range from CNSB 3 to CNSB 1000 (Class 1)

Step 3

As the rainstorm builds up to its maximum and the level of oil contamination reduces significantly, the nominal size flow continues to pass through the separation chamber and any excess flow of virtually clean water is allowed to bypass directly to the outlet.

Specification Larger models up to CNSB 1000 are available.

Area Drained (m²)	Tank Code including Silt	Length including Silt (mm)	Silt Capacity (L)	Oil Storage Capacity (L)	Diameter (mm)	Height (mm)	Base to inlet Invert (mm)	Base to outlet Invert (mm)	Access (mm)
1667	CNSB3s/21	1400	300	45	1026	2200	1730	1680	750
2500	CNSB4.5s/21	1785	450	67.5	1026	1875	1270	1220	600
3333	CNSB6s/21	1975	600	90	1026	1875	1270	1220	600
4444	CNSB8s/21	2165	800	120	1026	1875	1270	1220	600
5555	CNSB10s/21	2485	1000	150	1026	1875	1270	1220	600
8333	CNSB15s/21	2670	1500	225	1210	2150	1450	1400	600
11111	CNSB20s/21	3115	2000	300	1210	2150	1450	1400	600
13889	CNSB25s/21	3555	2500	375	1210	2150	1450	1400	600
16667	CNSB30s/21	3470	3000	450	1510	2690	1770	1720	750
22222	CNSB40s/21	4040	4000	600	1510	2690	1770	1720	750
27778	CNSB50s/21	4655	5000	750	1510	2690	1770	1720	750
33333	CNSB60s/21	4415	6000	900	1880	3300	2025	1975	2 x 600
44444	CNSB80s/21	5225	8000	1200	1880	3300	2025	1975	2 x 600
55556	CNSB100s/21	6010	10,000	1500	1880	3300	2025	1975	2 x 600

Note: It is a requirement of PPG3 that you have a silt capacity either in your tank or in an upstream catch pit.

۲

۲

Project: Project G

Title: Engineering Planning Report - Drainage & Water

Appendix G

Typical Flow Control Device (Or Similar)

16_21_5386 A	HB 5 Optimum Designer Rotesse vil 2	Hydro International.	armission in writing from	other than that for which it is supplied and must no t be reproduced in whole, or in part without prior perm	sign specification. Hydro international owns the copyright of this drawing, which is supplied in confidence. It must not be used for any purpose o	 If the equipment is subject to conditions outside the designation 	accept liability for performance of its equipment (or any part there
Job No. Revision	~	> International cannot	1 the specification. Hydro	3rd party. Hydro International have a policy of continuous development and reserve the right to amend th	ot accept any responsibility for any structure , plant or equipment (or the performance thereof) designed, built, manufactured or supplied by any :	tems supplied by it. Accordingly Hydro International cannot	Any warranty given by Hydro International will apply only to those
SHE-0197-35.00-5200-	0.0310	ce (m²)	al Clearant	Internal	unit and could constitute a flood risk.	26.56	Mean Flow over head range
Product ID Code		1	225	idate any design based on this P	The use of any other flow control will inval	1.758 20.83	Kick-Flo®
24-Nov-16	1385	-	1185	m	characteristic curve.	0.850 26.61	Flush-Flo [™]
Date	600	×	1535	ates the full head / flow D	are unique. Dynamic hydraulic modelling evalu	5.20 35.01	Design Point
_	395	J	200	irake Optimum® Flow Control C	DESIGN ADVICE The head / flow characteristics of this Hydro-B	HEAD (m) FLOW (I/s)	CONTROL POINT
E-mail: enquiries@hrdtec.com	1m)	SIONS (m	ey dimen	KE		CIFICATION	TECHNICAL SPE
Tel: +353 (0)1 4013964 Fax: +353 (0)1 4013978				m® is available from Hydro International	d Hydro-Brake® Chamber Base with pre-fitted Hydro-Brake Optimu	NOTE: A pre-forme	
Co Dublin							
Greenogue Business Park Rathcoole				SECTION B-B	ECTION A-A	SE	
Unit B 10/11 Greenogue Square				ļ			
Technologies Ltd	-			- r	- <u>+</u> -		
						d	
Drawn By Jackie McGovern					BO K SPIGOT	ь в в в в в в в в в	
ARKANGEMENI				× ×			
							INFLOW
				Ĭ	<u> </u>		
R6627 - Dublin					.c	<u> </u>	
FOR SURFACE WATER					0	<u>,</u>	
OPTIMUM®							
HYDRO-BRAKE							
					PIVOTING BYPASS DOOR		
				OPERATING ROPE	OPERA ING STEEL ROPE		
				EYE BRACKET FOR	PIVOTING BYPASS DOOR		
				ABOVE BYPASS DOOR	₩ 4		
chamber are minimum dimensions				- ACCESS TO BE POSITIONED		/	
 Dimensions shown for flow control 				SS DOOR	FITTED WITH PIVOTING 5 TPA	1	
are maximum dimensions				N CONTROL			
mounting plate) 7. Dimensions shown for flow control unit							
e.g. mounting plate, push fit, curved							
available with alternative mounting options					M OUTFLOW		
6. The Hydro-Brake Optimum® is also				7		~	A
E All did and installation work hy attorn							
4. For site specific details and minimum					/////////NEOPRENE GASKET		
handed to suit site conditions.	_					CT DRAWINGS	BE SPEC
The United Design Continue of the United States					FIXING BOLTS	T PIPE(S) WILL	OF INLE
with all relevant general arrangement and					FIXING LUGS WITH		
11. This drawing is an A3 sized original)	B		
Notes:	OUBT ASK	IF IN D		Y. NOT TO SCALE.	THIS DESIGN LAYOUT IS FOR ILLUSTRATIVE PURPOSES ONLY		DO NOT SCALE

Project: Project G

Title: Engineering Planning Report - Drainage & Water

Appendix H Qbar Calculation

CLIFTON S	CANNELL EMERSON ASSOCIATES	Job Ref No.	16_177	
Project	PROJECT G	Rev	1st	
Location	PROJECT G SITE	Date	25/11/2016	Clifton Scannell Emerson Associates
Calcs By	NM	Checked By	HF	
	Variables			
	AREA = 50Ha			Calculation of QBAR carried out for 50Ha site
	SAAR = 763mm			Average historical annual rainfall at Phoenix Park
	SOIL = 0.45			For soil type 4 from Table D1 from Volume 2 Appendix D (GDSDS)
	Allowable Discharge Per 50Ha			
	QBAR = $0.00108 \times (AREA)^{0.89} \times (SAAR)^{2}$	^{1.17} x (SOIL) ^{2.17}		6.3.1.2.1 (GDSDS)
	QBAR = $0.00108 \times (0.5)^{0.89} \times (763)^{1.17} \times$	(0.45) ^{2.17}		
	QBAR = 0.00108 x 0.53961 x 2199.7473	343 x 0.17680		
	QBAR = $0.242958 \text{ m}^3/\text{s}$			
	QBAR = 242.958 l/s			
	Allowable Discharge For Phase 1			
	AREA = 11.5Ha			
	Allowable Discharge = <u>55.4 l/s</u>			
	Allowable Discharge For Future Development S	erved by South P	ond	
	AREA = 13.7Ha			
	Allowable Discharge = <u>66.5 l/s</u>			
	Allowable Discharge For Entire Site			
	AREA = 26.0Ha			
	Allowable Discharge = <u>126.3 l/s</u>			

Project: Project G

Title: Engineering Planning Report - Drainage & Water

Appendix I IDA Connection Agreement

www.csea.ie

AN GHNÍOMHAIREACHT | INVESTMENT AND INFHEISTÍOCHTA AGUS FORBARTHA DEVELOPMENT AGENCY PÁIRC GNÓ & TEICNEOLAÍOCHTA | ATHLONE BUSINESS BHAILE ÁTHA LUAIN & TECHNOLOGY PARK CARRAIG AN CHAISLEÁIN GARRYCASTLE BÓTHAR BHAILE ÁTHA CLIATH DUBLIN ROAD BAILE ÁTHA LUAIN ATHLONE CO. NA HIARMHÍ CO. WESTMEATH ÉIRE IRELAND FÓN (090) 6471500 TEL (090) 6471500 FACS (090) 6471550 FAX (090) 6471550 SUÌOMH GRÉASÁIN www.idaireland.com WEBSITE www.idaireland.com

February 24th 2017

Re: IDA Ireland Consent to apply for Planning Permission - Proposed development at IDACruiserath, Blanchardstown, Dublin 15.

To whom it may concern,

I wish to confirm that IDA Ireland, as freehold registered owners of the c. 26.14 hectare site at IDA Cruiserath lands, Blanchardstown, Co. Dublin, has reviewed the proposed development drawings, namely drawing numbers: AWS-MCA-01-XX-DR-A-1000 to AWS-MCA-XX-DR-A-7902.

Furthermore, IDA Ireland has no objection to the proposal in principal, as set out within the above referenced drawings subject to **Amazon Data Services Ireland Ltd** complying with the following conditions:

- 1. Compliance with the regulations and obtaining approval of all public, local, and other authorities.
- 2. Receipt of planning permission and complying with conditions as required by the relevant Local Authority.
- 3. Obtaining fire certificate and complying with conditions.
- 4. Compliance with Building Regulations.
- 5. Compliance with the rights of lessees and occupiers of adjoining and surrounding properties.
- 6. The reinstatement, to the satisfaction of IDA Ireland, of any damaged areas/services adjoining the development.
- 7. IDA Ireland to be notified of proposed commencement and completion dates for the proposed development.

I hereby confirm IDA Ireland's consent in principal to Amazon Data Services Ireland Limited making a new surface water drainage and foul drainage connection to IDA Ireland's existing surface water and foul drainage network, located within the south east corner of the Property. This consent is subjet to the applicant agreeing a connection with the relevant third party utility infrastructure owners/providers where necessary.

This letter of consent is valid only for the purpose of Amazon Data Services Ireland Limited making an application to the appropriate planning authority for the above development.

Yours sincerely,

Sarah O' Grnell

Sarah O'Connell Property Division IDA Ireland

Project: Project G

Title: Engineering Planning Report - Drainage & Water

Appendix J

Irish Water Pre-Connection Enquire Form

Pre-connection enquiry form

Large industrial & commercial, mixed use developments, housing developments, non domestic developments

This form is to be filled out by applicants enquiring about the feasibility of a water and/or wastewater connection to Irish Water infrastructure. Please complete this form in BLOCK letters using a black ink ballpoint pen.

Section A Applicant details

1 Applicant details:

Contact name: EUGENE BRENNAN
Company name (if relevant): ATTAZON DATA SERVICES IRELAND ITD.
Postal address: BURLINGTON PLAZA
BURLINGTON ROAD
DUBLIN 4
Telephone: 087 950 1932 Email: EUGBREN @AHAZON, COH

IW/Form/PCEF REV 2

2 Correspondence address (if different from applicants above):

Contact name:
Company name (if relevant):
Postal address:
Telephone:Email:

3 Engineering Consultant

Contact name:PETER FAGAN (HUBERT FENERAN
Company name (if relevant): CLIFTON SCANNELL EXERSON ASSOCIATES
Postal address: SEAFORT LODGE
CASTLEDADSON AVENUE,
BLACKROCK, CO. DUBLIN
Telephone: 01 288 5006 Email: PETER FAGAN @CSEA.IE

HUBERT. FENERAN @ CSEA. 1E

Section B Site details

4	Site address: ADSIC			
	CRUISERATH ROAD,			
	DUBLEN 15			
5	Name of Local Authority: FINGAL CO. CO.			
6	Has full planning permission been granted?	Yes		No 🗹
	If 'Yes' please indicate the Planning reference number:			
7	Irish National Grid co-ordinates: Eastings 70744 [Northi	ings_	741593
8	Previous use of site (if applicable): <u>FARMLAND</u>			
9	Date previous development was last occupied (if applicable):			
10	Are there poor ground condition issues?	Yes		No 🗹
	If Yes please include site investigation report and a detailed site specific report to deal with ground conditions specifically with regard to pipe support and tree	on the nching.	appr	oach being taken
11	Are there potential contaminated land issues?	Yes		No 🖸

If Yes please include a detailed site specific report on the approach being taken to deal with contaminated land and the measures to mitigate impact on the infrastructure.

12	Is the development in accordance with the local area/development plan? Yes 🔟 No 🗆
	Section C Service details
13	Request for connection Water 🗆 Wastewater 🗖 Both 🗹
14	Is this application for an additional water connection to the one already installed? Yes 🗆 No 🗹
15	Is this application for an additional wastewater connection to the one already installed? Yes 🗆 No 🗹
16	Please provide WPRN No. (If there is an existing connection):
17	Do you require an upgrade/increase in size to an existing water connection? Yes D No
18	Do you require an upgrade/increase in size to an existing wastewater connection? Yes \Box No
19	Please indicate water demand (include calculations on attached calculation sheet)
	Pre-development peak water demand

The development peak water demand		1/3
Pre-development average water demand		1/s
Post-development peak water demand	6.0	I/s 🌋
Post-development average water demand	1.0	1/s
Normal demand	1.0	1/s

Pre-development refers to brownfield sites only. Demand rates (Peak & Average) are site specific. Average demand is the total daily volume divided by a 24 hour time period and expressed in litres per second I/s. However, this might not be the normal flow that would arise. Normal demand is the total daily demand during business hours (over say an 8-hour period with very little demand during the other 16 hours).

* PHASED DEPLOYMENT COUNECTION REPUBLICHENTS:

PHASE	1:	APRIL	17,2017
PHASE	2:	SUNE	17,2018
PHASE	3:	ce	4,2019
PHASE	4:	æ	er, 2020
PHASE	5:	a	a. 2021
PHASE	6:	6	6 7022
PHASE	チェ	er	4 2023
PHASE	8:	*	~ 2026

IW/Form/PCEF REV 2

20 Wastewater Hydraulic Load (include calculations on attached calculation sheet)

Pre-development peak discharge	l/s
Pre-development average discharge	l/s
Post-development peak discharge	l/s
Post-development average discharge	l/s

Pre -development refers to brownfield sites only. Demand rates (Peak & Average) are site specific. Average demand is the total daily volume divided by a 24 hour time period and expressed in litres per second l/s.

21 Organic Load:

	1	
Characteristic	Max concentration	Average concentration
Biochemical Oxygen Demand (BOD), mg/l		
Suspended Solids (SS), mg/l		
Total Nitrogen (N), mg/l		
Total Phosphorus (P), mg/l		
Other, mg/l		

22 Storm/surface water will only be accepted from brownfield sites that already have a storm/surface water connection to a combined sewer. In the case of such brownfield sites please indicate if it is proposed that the development intends discharging surface water to the combined wastewater collection system? Yes □ No □

If yes, give reason for discharge and comment on adequacy of SUDS/attenuation measures proposed

23 What is the reduced level at the property boundary at connection point above Malin Head ordnance datum?

						(m)
24	What is the lowest finished floor level on site above M	alin Head ordnance d	atum?_			(m)	
25	Is on site water storage being provided?		Yes	V	No		
	Please include calculations on attached calculation shee	t Please note on site i	Nator s	torage m	av not	he	

Please include calculations on attached calculation sheet. Please note on site water storage may not be required. See guidance notes.

26	Are there fire flow requirements?	Yes 🗖	No 🗹
	Additional Fire Flow requirements over and above those identified in Q19	l/s	
	Please include calculations on attached calculation sheet and confirm Authority.	nation of requirements f	rom the Fire
27	Please identify if you propose to supplement your potable water su	upply from other sources Yes	s? No 🗹

If yes please indicate how you propose to supplement your potable water supply from other sources:

Section D Development details

28

Please indicate property types: Number **Total Number of Properties for this application** Property Type - Domestic Property Type - Non Domestic NO. IT WAREHOUSE (DATA CEARE) 8 11 office NO. SECURITY OFFIC CE residential care home NO, ELEC. 30B STATION 1 NO. PRINKEER PUMPI FOUSE Factory School Retail unit Commercial unit Industrial unit

29	Approximate start date of proposed development:	APRIL	2017	2		
30	Approximate date water connection is required:	JUNE	2017			
31	Approximate date wastewater connection is required:					
32	Is the development multi-phased?		Yes	\checkmark	No	

If Yes please provide a master-plan with your application identifying the phases and current phase number.

If Yes please provide details of the variations in the water demand volumes due to the phasing requirements.

Section E Documentation to be submitted

A site location map to a scale of 1:1000, which identifies clearly the land or structure to which the application relates. The map shall include:

- a) The scale shall be clearly indicated on the map.
- b) The **boundaries** shall be delineated in red.
- c) Adjacent street names.
- d) The site **co-ordinates** shall be marked on the site location map.

Please provide the following additional information:

- a) Calculations
- b) Any other information that might help Irish Water assess this pre connection enquiry application.

Section F Declaration

The details I/we have given with this application are accurate.

I/We have enclosed all the necessary supporting documentation.

Your details

Signature:	Eugere Brennon
Date:	21/11/16
Your full name	
(In Block Capitals):	EUGENE BRENNAN (ADSIL)

Irish Water will carry out a formal assessment based on the information provided in this form. Any future connection offer made by Irish Water will be based on the information provided.

Please submit a scanned copy (in pdf format) of the completed form and supporting information to your Regional New Connections Team for assessment.

Calculations

Water Demand

Foul Wastewater Discharge

On Site Storage (Water and Wastewater)

N 1

PHASE	STORAGE (L)	COROLATIVE STORAGE(L?
1	79.000	78,000
2	53 000	132,000
3	53'000	185 000
4	53,000	238,000
5	53.000	281,000
6	53 000	366,000
Ŧ	53 000	397,000
8	53 000	450 000

Fire Flow requirements

Clifton Scannell Emerson Associates Limited, Civil & Structural Consulting Engineers Seafort Lodge, Castledawson Avenue, Blackrock, Co. Dublin, Ireland.

T. +353 1 288 5006 F. +353 1 283 3466 E. info@csea.ie W. www.csea.ie

Appendix B – Permitted Site Drawings

		ц	Ľ				<u>۵</u>	<u>م</u>	m 0	,					Č	5 -																			"	<u> </u>														Ť	-	0				—							ш					_
Cover to	adiu	4.01	4.21	4.19	4.18	3.69	0.93	0.78	0.62	3.40	3.25	1.34	1.20	3.15	1.22	1.20	3.08	1.40	1.20	3.05	2.95	1.83	1.38	1.20	2.72	1.83	1.72	1.31	1.20	1.33	2.35	1.50	1.37	1.20	2.10	141	1.20	1.41	1.20	1.84	1.56	1.51	1.20	1.20	3.86	3.05	2.93	2.71	2.18	2.20	1.05	1.82	1.79	1.69	1.20	1.73	1.20	1.77	1.20	1.20	1.64	1.20	7.49	7.23	7.00	6.39	2.78	2.81
Manhole Ring Size	(mm)	N/A	1350	N/A	N/A	2100	2100	2100	2100 N/A	AN AN	1800	1350	1350	1800	1200		1800	2100	1350	1200	1500	2100	1350	1350	2100	1350	2100	1500	1200	1200	1800	1350	1350	1350	2400 1800	2100	1200	1200	1200	1200	1500	2100	1200	1200	1350	1350	1350	2100	2100	2100	1800	1800	2400	1800	1200	2400	1200	1800	1350	1350	1500	1350	1350	1500	1350	2100	2100	2100
Manhole	Iype	N/A Tvne K	Type K	Bespoke	Bespoke	Type K	Type J	Type J	l ype J Besnoke	Bespoke	Type K	Type J	Type J	Type K	Type J	Bespoke	Type K	Type J	Type J	Type J Type K	L ype J	Type J	Type J	Type J	Type J	L april 1	Type J	Type J	Type J	Type J	Type J	Type J	Type J	Type J	Type J	Tvpe J	Type J	Type J	Type J	L ype J Tvne J	L appe	Type J	Type J	Type J Type J	Type K	Type K	Type J	Type J	L ype J	Bespoke	Type J	Bespoke	Type J	Type J	L advi	Type J	Type J	Type J	Type J	Type J	Type J	Type J	Type L	Type L	Type L	Type L	Type J	Type J
Manhole Depth to IL	(m)	7.02	4.03	4.64	4.63	4.89	2.13	1.98	1.82	4.60	4.15	1.72	1.58	3.90	1.44	1.28	3.83	1.93	1.58	3.65	3.55	2.28	1.83	1.65	3.17	2.28	2.09	1.61	1.50	1.55	3.25	1.95	1.82	1.65	3.00	67.7	1.50	1.71	1.50	2.44	2.09	1.96	1.50	1.50	4.24	3.43	3.30	3.08	2.56	2.58	1.80	2.57	2.54	1.99	1.43	2.48	1.43	2.52	1.58	1.58	2.24 1.65	1.58	7.87	7.60	7.38	6.76	3.45	3.48
Pipe	(mm)	900 375	375	450	450	1200	1200	1200	1200	1200	006	375	375	750	225 276	523	750	525	375	300	600	450	450	450	450	450	375	300	300	525	006	450	450	450	900	375	300	300	300	30 600	525	450	300	300	375	375	375	375	375	375	750	750	750	300	225	750	225	750	375	375	600 376	375	375	375	375	375	675	675
С	Ê,	85.650 86.700	86.700	86.700	86.700	87.100	84.500	84.500	84.500 e.e. 700	86.700	86.700	86.250	86.250	86.700	86.250 86.250	85.100	86.700	86.250	86.250	86.250 86.700	86.700	86.525	86.250	86.250	86.700	85.900	86.000	86.100	86.185	85.900	86.150	86.250	86.250	86.250	86.050 86.100	86.185	86.185	86.185	86.185	86.100 85 ann	85.950	86.185	86.185	86.185 85 900	85.900	85.300	85.375	85.375	85.100 85.185	85.185	84.485	85.185 85.185	85.185	85.350	85.265 85.100	85.170	85.100	85.305 of 275	85.635	85.900	85.375 ee.075	85.200	86.500	86.300	86.200	85.900	86.050	85.900
2	E)	78.632 82.010	82.054	82.064	82.075	82.214	82.367	82.515	82.680 e2.0e2	82.102	82.547	84.535	84.675	82.800	84.805 84.875	83.825	82.875	84.324	84.675	84.750 83.051	83.146	84.247	84.418	84.600	83.533	83.620	83.907	84.486	84.685	84.349	82.899	84.296	84.427	84.600	83.052 83.350	84.398	84.685	84.473	84.685	83.656 84.400	83.863	84.229	84.685	84.685 84.472	81.664	81.871	82.073	82.293	82.544 82.601	82.608	82.690	82.615 82.637	82.649	83.356	83.840 83.675	82.689	83.675	82.788	84.060	84.325	83.138 e4 275	83.621	78.632	78.698	78.821	79.137	82.600	82.419
Slope	(X:1)	N/A	500	500	500	500	500	500	500	504	499	304	302	500	161 161	N/A	499	488	291	47 504	500	284	283	285	451	374	375	301	300	225	505	378	379	279	498 502	202	143	242	242	300	500	413	72	241 225	375	375	375	375	375	375	500	500	500	211	168 155	500	168	500	186	197	500	4uz 315	500	500	500	500	,	500
Fall	Ê	N/A	0.044	0.00	0.011	0.139	0.153	0.148	0.165	0.019	0.138	0.118	0.140	0.103	0.196	N/A	0.075	0.073	0.201	0.422	960.0	0.125	0.171	0.182	0.126	0.087	0.211	0.049	0.199	0.293	0.072	0.033	0.131	0.173	0.153	0.038	0.423	0.212	0.212	0.156	0.132	0.024	0.306	0.306	0.172	0.207	0.202	0.220	0.250	0.007	0.082	0.007	0.012	0.026	0.181	0.040	0.113	0.099	0.283	0.265	0.163	0.257	0.016	0.066	0.123	0.157	;	0.181
Pipe Length	S (E)	N/A 17 71	22.00	4.61	5.59	69.42	76.73	74.16	82.27	9.370	68.740	35.880	42.390	51.530	31.520 3.150	8.650	37.310	35.560	58.500	19.850 13.160	47.840	35.380	48.390	51.820	56.840	32.690	79.260	14.830	59.840	65.870 44.4E0	36.250	12.300	49.620	48.190	74 180	9.840	60.470	51.340	51.300	77.950 80.220	66.140	9.980	22.000	73.890	64.470	77.720	75.900	82.590	93.790 21.360	2.800	40.900	3.275 11.180	6.220	5.590	30.460 37 700	19.900	18.960	49.330	52.840	52.130	81.650 76.305	81.050	7.850	33.04	61.56	78.62		90.65
ON HM		S1	S2	S2.1	S3	S3.1	S3.2	S3.3	S3.4	¥ %	S6	S6.1	S6.2	S7	S7.1 S7.2	57.3 S7.3	S8	S8.1	S8.2	S8.3	S10	S10.1	S10.2	S10.3	S11.	S12	S13	S13.1	S13.2	S14	S101	S101.1	S101.2	S101.3	S102 S103	S103 1	S103.2	S103.3	S103.4	S104 1	S105	S105.1	S105.2	S105.3 S106	5100 S200	S201	S202	S203	S204 S205	S206	S206.1	S207 S208	S209	S209.1	S209.2 S209.3	S210	S210.1	S211	S212.1	S212.2	S213 5213 1	S213.1 S214	S300	S301	S302	S304 S304	S400	S401
0		n 🗸	t 10	9	7	~	6	; 19	11	13	14	15	16	17	18	20	21	52	53	24	26	27	28	28	31 31	32	33	34	35	36	3 8	39	40	41	42	4 4	45	46	47	48	20 2	51	52	53	55	56	57	58	60	61	62	64 63	65	66	68	69	2	71	73	74	75	2 2	78	79	80	82	83	84

A1 - © CSEA 2017 - Rev 00		1.10kv	N. A.
Project Overall Proposed and Existing Foul Drainage Layout Drainage Layout Drawn By LT Date 24/10/2016 Ormon By HF Scale 1-1250 Q A1 Project Code Originator Project Date Desc Desc Desc A1 ISSUED FOR CONSTRUCTION M ISSUED FOR CONSTRUCTION 16_177 C00 Construction 16_177 Revision Project Status CSEA Job Nn.	Clifton Scannel Energy Associates United Sector Longe Sector Longe Sec	STORM SEVER PPES TO BE ADS HIPE TWINNLLI IN ACCORDANCE WITH STORM SOURCE TO BE ADS HIPE TWINNLLI IN ACCORDANCE WITH STORM AND TER DRAINING FOR PIES - 430mm NO NAMETER AD DAOLE. ALL ENTERANL CONNECTIONS ARE 100mm ADS HIPE TWINNLLI IN ACCORDANCE ALL INTERNAL CONNECTIONS ARE 100mm ADS HIPE TWINNLLI IN ACCORDANCE ALL DEVICON CONNECTIONS ARE 100mm ADS HIPE TWINNLLI IN ACCORDANCE ALL DEVICON CONNECTIONS ARE 100mm ADS HIPE TWINNLL IN ACCORDANCE FORALL MANNOLE DISTO SAUDULED INTO NAME DDI AUMOLE CONNECTIONS TO AUUS DEVILS TO ED SUBMITTED FOR APPROVAL FORALL MANNOLE FOR SAUDULED INTO NAME DDI AUMOLINE STANDARD CONNECTIONS TO ALL DEVICES THE DIAMETERS ON WIN THE STANDARD WORKS FOR AUMOLE FOR DAVIDUAL DO FOR FEER TO THE GRAFTER DO AUMOLE SCHEDULE BEGINERE FOR APPROVAL. PUBLIES TO DE CONSTRUCTED IN ACCORDANCE WITH DRAINING ALS STORMARD FOR THE DIAMETERS IN ACCORDANCE WORKS ACCORDANCE WITH DRAINING ALS STORMARD FOR THE RESH WARED ACCORDANCE WITH DRAINING ALS STORMARD DEFILS TO BE CONSTRUCTED IN ACCORDANCE WITH DRAINING ALS STORMARD ADD OUT ALS THE AUXOUNCES ONE IN HIME CONTRACTOR IS IN RESPONSIBLE FOR APPROVAL. ALL PUBLIES ON AND AUGUST TO DE CONSTRUCTED IN ACCORDANCE WITH DRAINING ALS STORMARD DEFILS TO BE CONSTRUCTED IN ACCORDANCE WITH DRAINING ALS STORMARD DEFILS TO THE BIGINEER FOR APPROVAL. ALL PUBLIES ON AND SUBJECT TO THE ENDINEER FOR APPROVAL. IN ACCORDANCE STORE ACCORDANCE WITH THE INFORMATION OF A DUBLING TRUTTED TO THE BIGINEER FOR APPROVAL. INFE CONTRACTOR MUST INCLUDE FOR APPROVAL. INFE CONTRACT SW. SUBJECT FOR APPROVAL INFE CONTRACT SW. THE DORE AND SUBJECT TO THE ENDINEER FOR APPROVAL. INFE CONTRACT SW. INFE CONTRACT SW	This drawing is produced using the : Irish Transverse Mercator (ITM)

Appendix C – Irish Water CoF and PCE
Letter Ref: CDSCOF1

Eugene Brennan Amazon Data Services Ireland Ltd. Burlington Plaza Burlington Road Dublin 4

14th February 2017

Dear Sir/Madam,

Re: CUST16622 11 No. Data Centres at Cruiserath Road, Dublin 15 pre-connection enquiry – Subject to contract | Contract denied.

Irish Water has reviewed your pre-connection enquiry in relation to water and wastewater connections at Cruiserath Road, Dublin 15 (the **Premises**). Based upon the details you have provided with your pre-connection enquiry and on the capacity currently available as assessed by Irish Water, we wish to advise you that, subject to a valid connection agreement being put in place, your proposed connection to the Irish Water network can be facilitated.

Wastewater:

If the wasterwater connection is to be via a private pumping station, the pumping station should have 24 hour storage capacity.

Water:

PRV to be included on the water connection.

You are advised that this correspondence does not constitute an offer in whole or in part to provide a connection to any Irish Water infrastructure and is provided subject to a connection agreement being signed at a later date.

A connection agreement can be applied for by completing the connection application form available at **www.water.ie/connections**. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Energy Regulation.

If you have any further questions, please contact us on **1850 278 278** or +353 1 707 2828, 8.00am-4.30pm, Mon-Fri or email newconnections@water.ie. For further information, visit www.water.ie/connections

Yours sincerely,

Maria O'Dwyer Connections and Developer Services

Uisce Eireann Bosca OP 860 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Irish Water PO Box 860 South City Delivery Office Cork City

www.water.ie

Pre-connection enquiry form

Large industrial & commercial, mixed use developments, housing developments, non domestic developments

This form is to be filled out by applicants enquiring about the feasibility of a water and/or wastewater connection to Irish Water infrastructure. Please complete this form in BLOCK letters using a black ink ballpoint pen.

Section A Applicant details

1 Applicant details:

Contact name: EUGENE BRENNAN
Company name (if relevant): AMAZON DATA SERVICES IRELAND LTD.
Postal address: BURLINGTON PLAZA
BURGHNGTON ROAD
DUBUN 4

Telephone: 087 950 1932 Email: EUGBREN @ARAZON. COM

2 Correspondence address (if different from applicants above):

Contact name: NA
Company name (if relevant):
Postal address:
Telephone:Email:

3 Engineering Consultant

 \mathbf{k}

Contact name: PETER FAGAN / HUBERT FENERAN
Company name (if relevant): CLIFTON SCANNELL EXERSON ASSOCIATES
Postal address: SEAFORT LODGE
CASTLEDAOUSON AVENUE,
BLACKROCK, CO. DUBLIN
Telephone: OI 2885006 Email: PETER, FAGAN @CSEA.IE

HUBERT. FENERAN @ CSEA. 1E

Section B Site details

4	Site address: ADSIC			
	CRUISERATH ROAD,			
	DUBLEN 15			
5	Name of Local Authority: FINGAL CO. CO.			
6	Has full planning permission been granted?	Yes		No 🗹
	If 'Yes' please indicate the Planning reference number:			
7	Irish National Grid co-ordinates: Eastings 70744	Northir	ngs	741593
8	Previous use of site (if applicable):			
9	Date previous development was last occupied (if applicable):			
10	Are there poor ground condition issues?	Yes		No 🗹
	If Yes please include site investigation report and a detailed site specific report to deal with ground conditions specifically with regard to pipe support and tre	t on the nching.	appro	bach being taken
11	Are there potential contaminated land issues?	Yes		No 🗹

If Yes please include a detailed site specific report on the approach being taken to deal with contaminated land and the measures to mitigate impact on the infrastructure.

12	Is the development in accordance with the local area/development plan? Yes 🔟 No 🗆
	Section C Service details
13	Request for connection Water 🗆 Wastewater 🗖 Both 🗹
14	Is this application for an additional water connection to the one already installed? Yes 🗆 No 🗹
15	Is this application for an additional wastewater connection to the one already installed? Yes 🗆 No 🗹
16	Please provide WPRN No. (If there is an existing connection):
17	Do you require an upgrade/increase in size to an existing water connection? Yes D No
18	Do you require an upgrade/increase in size to an existing wastewater connection? Yes \Box No
19	Please indicate water demand (include calculations on attached calculation sheet)
	Pre-development peak water demand

Pre-development peak water demana		1/5
Pre-development average water demand		l/s
Post-development peak water demand	6.0	1/s 🎽
Post-development average water demand	1.0	1/s
Normal demand	1.0	1/s

Pre-development refers to brownfield sites only. Demand rates (Peak & Average) are site specific. Average demand is the total daily volume divided by a 24 hour time period and expressed in litres per second I/s. However, this might not be the normal flow that would arise. Normal demand is the total daily demand during business hours (over say an 8-hour period with very little demand during the other 16 hours).

* PHASED DEPLOYMENT CONNECTION REPUIREMENTS:

PHASE	1:	APRIL	17,2017
PHASE	2:	SUNE	17,2018
PHASE	3:	ce	4,2019
PHASE	4:	ec.	er, 2020
PHASE	5:	a	a. 2021
PHASE	6:	6	· 2022
PHASE	チェ	er	4 2023
PHASE	8:	*	" 2026

IW/Form/PCEF REV 2

20 Wastewater Hydraulic Load (include calculations on attached calculation sheet)

Pre-development peak discharge	/	1/s
Pre-development average discharge	/	1/s
Post-development peak discharge	0.07	l/s
Post-development average discharge	/	1/s

Pre -development refers to brownfield sites only. Demand rates (Peak & Average) are site specific. Average demand is the total daily volume divided by a 24 hour time period and expressed in litres per second l/s.

21 Organic Load:

Characteristic	Max concentration	Average concentration
Biochemical Oxygen Demand (BOD), mg/l		
Suspended Solids (SS), mg/l		
Total Nitrogen (N), mg/l		
Total Phosphorus (P), mg/l		
Other, mg/l		

22 Storm/surface water will only be accepted from brownfield sites that already have a storm/surface water connection to a combined sewer. In the case of such brownfield sites please indicate if it is proposed that the development intends discharging surface water to the combined wastewater collection system? Yes No

If yes, give reason for discharge and comment on adequacy of SUDS/attenuation measures proposed

23 What is the reduced level at the property boundary at connection point above Malin Head ordnance datum?

24	What is the lowest finished floor level on site above Malin Head ordnance da	tum?_	 	(m)
25	Is on site water storage being provided?	Yes	No	

(m)

Please include calculations on attached calculation sheet. Please note on site water storage may not be required. See guidance notes.

26	Are there fire flow requirements?	Yes 🗖	No 🗹
	Additional Fire Flow requirements over and above those identified in Q19	l/s	
	Please include calculations on attached calculation sheet and confir Authority.	mation of requirements fr	om the Fire
27	Please identify if you propose to supplement your potable water s	supply from other sources Yes □	? No 🗹
	If yes please indicate how you propose to supplement your potable	water supply from other	sources:

Section D Development details

 $\Sigma = 50$

28

Total Number of Properties for this application				Number
Property Type - Domestic	1 3/ 1			
Property Type - Non Domestic	11	\rightarrow	8	NO. IT WAREHOUSE (DATA CO
office			1	NO. SECURITY DEFICE
residential care home			1	NO. ELEC. JOB STATION
Hotel			1	NO. PRINKEER PUMP HOUSE
Factory				
School				
Institution				
Retail unit	1.200			
Commercial unit				
Industrial unit				

29	Approximate start date of proposed development:	APRIL	2017	9		
30	Approximate date water connection is required:	JONE	2017			
31	Approximate date wastewater connection is required: _					
32	Is the development multi-phased?		Yes	\checkmark	No	

If Yes please provide a master-plan with your application identifying the phases and current phase number.

If Yes please provide details of the variations in the water demand volumes due to the phasing requirements.

Section E Documentation to be submitted

A site location map to a scale of 1:1000, which identifies clearly the land or structure to which the application relates. The map shall include:

- a) The scale shall be clearly indicated on the map.
- b) The **boundaries** shall be delineated in red.
- c) Adjacent street names.
- d) The site co-ordinates shall be marked on the site location map.

Please provide the following additional information:

- a) Calculations
- b) Any other information that might help Irish Water assess this pre connection enquiry application.

Section F Declaration

The details I/we have given with this application are accurate.

I/We have enclosed all the necessary supporting documentation.

Your details		
Signature:	Eugere Brennon	
Date:	21/11/16	
Your full name		
(In Block Capitals):	EUGENE BRENNAN (ADSIL)	

Irish Water will carry out a formal assessment based on the information provided in this form. Any future connection offer made by Irish Water will be based on the information provided.

Please submit a scanned copy (in pdf format) of the completed form and supporting information to your Regional New Connections Team for assessment.

Calculations

Water Demand

Foul Wastewater Discharge

	_																															
	10	E	6	STI	ret	HE	D	I	AL	4	7	15	CH	ARI	άĒ	1	Eal	7	THE	-	De	EVE	Le	Pr	IE.	57	-	Ha	5	B	EE	N
	CA	LC	OL	AT	ED	-	N	A	cce	DRI	X	NC	C	w	Ite	1	TA	Bel		3	0	F .	TH	E	ET	PA	'5					
	"h)A.	510	EN	KI	ER		TR	EAT	THE	w.	1	An	DA	45	: 7	RE	AT	HE	Ter	1	15	TE	15	Ŧ	672	5	MA	ALC			
	Co	MM	OL	0(7	iE	5,	BU	SIA	Æ3	55,	LE	150	RE	4	EN.	TRE	5	Ac	D	H	STE	15	"	15	78	R	-2	ECT	Ton)	5.2	.3.
	OF	1	IDL	UM	E	2	8	F	TH	E	61	25	DS		155	UT	(In	6	A	M	Ax	IN	OF	(DA	(24		Dic	UF	An	CY	/
	ÐE		18	No	Þ	3	t At	F	A	UD		81	SO.		SE	CU	217	Y	_/	to	D	A	F	ER	4	:47	27	A			_	_
	NI	151	EL	AT	ER		FL	Dω	(DE	3	0	4	DA	2	FC	2	IN	D	ST	RU	AL	ĩ	EV	EL	SP	HE	25	5		_	
	WI	TH	a	T	C	to	TEE	N	9	AC	14	Th	55	,T	HE	_2	A	14	-	221	e	al	EA-	THE	R	FL	00	١	CD	W	E)	
_	AS	50	11	170	ED	4	517	74	T	HE		FIL	251		9H	AS	E	C	= -	TH	E	P	έV	EL	OF	ME	2	T	1	5	_	_
Ш	78	0	h(D	l.	7	HE	Ê	5	TIM	A	EI	2	£	Duit	E	FL	∞	7	FOR	7	ίÆ	C	ON	PL	ET	ET	>	FL	TR	PE	
	DE	VE	LC	PH	EN	T	12	5	6,	24	06	11	22	_							_		_									_
		_				_				_				_		_	_				_			_	_					_	-	
-							_			-	_	_		_	192	-		-		-	_			_	_			_			_	_
-		_		-			_			_	_	_		_		_				_	_	_									-	_
-		_		-	_	_								_	_		_				_		_	_		_	-	_		_	-	_
-														-	-					-	_				-			-		_		
-														_	-	_	_			-				-		_		_		_	-	
-			-	-		-	_	_												-		-		-		-		_		_	_	
								1	1.				Col.	_			1	6	_	-				-		_		_	i.		_	

On Site Storage (Water and Wastewater)

PHASE	STORAGE (L)	COROLATIVE STORAGE (L7
1	78.000	78.000
2	53 000	132,000
3	53 000	185 000
4	53000	238,000
5	53,000	281,000
6	53 000	366,000
Ŧ	53 000	397,000
8	53 000	(50 000

Fire Flow requirements

Clifton Scannell Emerson Associates Limited, Civil & Structural Consulting Engineers Seafort Lodge, Castledawson Avenue, Blackrock, Co. Dublin, Ireland.

T. +353 1 288 5006 F. +353 1 283 3466 E. info@csea.ie W. www.csea.ie

